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Abstract

Intrusion Detection (ID) is essential for protecting computer networks. The rising

sophistication of threats as well as the improvement of physical network properties

present increasing challenges to contemporary ID techniques. For example, the rate

of traffic inflow prevents most traditional network- and signature-based ID systems

from conducting more than a sparse sampling, opening the door for malicious traffic

to enter the network without scrutiny. ID techniques are commonly defined in terms

of location (i.e. where it is performed) as well as approach (how it is performed). With

respect to location, the multi agent design paradigm leverages the strengths of both

network -based and host-based ID methods. With respect to the approach, flow -based

intrusion detection complements traditional signature-based and behavior -based ID

systems.

This research develops: 1) a scalable software architecture for a new, self-organized,

multi agent, flow-based intrusion detection system; and 2) a network simulation envi-

ronment suitable for evaluating an implementation of this multi agent system (MAS)

architecture and for other network research purposes.

Self-organization is achieved in two ways. First, a “reputation” system permits

agents to dynamically find nodes that are most effective for classifying malicious

network activity. Second, multi objective evolutionary algorithms aid in the search

for effective operational parameter values.

A first implementation of the MAS architecture using reputation is quantitatively

evaluated, via hypothesis testing, and found to significantly outperform a static, ran-

domly distributed MAS for certain combinations of agent population sizes and obser-

vation periods. Improvements range from 3.6 to 11.6 percent increased classification

iv



accuracy.

Following these results, the network simulation environment complexity is in-

creased in a second iteration design, and a new MAS is developed to deal with more

realistic challenges, including communication difficulties and a broader range of ma-

licious activity scenarios. The environment and the MAS are qualitatively evaluated

and found to successfully achieve essential functionality.

These encouraging results establish an optimistic outlook for further research in

flow-based multi agent systems for intrusion detection in complex computer commu-

nication networks.
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A MULTI AGENT SYSTEM FOR FLOW-BASED
INTRUSION DETECTION USING REPUTATION

AND EVOLUTIONARY COMPUTATION

I. Introduction

Surveying the modern digital expanse of the computer network for entities nefar-

ious and profane is the work of an Intrusion Detection System (IDS). Techniques for

intrusion detection are as diverse as their targets, but are often characterized in two

ways: 1) network-based or host-based; and 2) signature-based or behavior-based [95].

The signature-based IDS reacts to strings flowing across its aperture that match

a signature in a repository of undesirable anomalies. Such a system may be effective

for many classes of attacks when caretakers provide a steady supply of up-to-date

signatures. As the signature repository grows, however, it is increasingly difficult

to compare every packet with every signature. The IDS can become overwhelmed

with processing and fail to detect many malicious packets [95]. The behavior-based

IDS, on the other hand, reacts to anamolous system activities. Unfortunately, the

behavior-based IDS is designed to notice the symptoms of an already-infected subject.

A technique complementary to these approaches examines statistics related to the

inbound and outbound traffic flows1 and is particularly suited for attacks that make

large disturbances in the distributions of these statistics.

Network-based intrusion detection is typically implemented at the network’s gate-

way. With this eye-in-the-sky vantage point, it may be able to detect patterns in-

volving multiple hosts that individually would appear innocuous. It is technically

1A flow is a set of messages passing an observation point in the network during a certain time in-
terval. Messages belonging to a flow have a set of common properties, such as source and destination
addressing information and a message type [129].
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challenging or impossible, however, for the network-based IDS to inspect every packet

given today’s linespeeds, and will inevitably fail to protect individual hosts from every

attack. Host-based intrusion detection can be highly responsive to local situations,

but has no appreciation for malicious activity that is inherently distributed across the

network. The multi agent system paradigm applied to intrusion detection attempts

to get the best of both of these approaches [159]. Autonomous, mobile agents reside

transiently at network hosts, and can detect and respond to local problems as well as

summarize local information on behalf of a central entity performing network-based

intrusion detection functions.

Sperotto et al. [139] survey current flow-based intrusion detection techniques. In

each of 14 systems in their survey, data processing is centralized. In all but four of

these systems, data collection is also centralized. In concluding remarks, they point

to the research opportunities in “the development of distributed flow-based detection

systems” (emphasis in the original).

Hence, this research investigation develops and analyzes two iterations of a multi

agent, flow-based intrusion detection system. One of the innovations in this research

effort is the use and evaluation of a ‘reputation’ system to govern agent mobility.

1.1 The Generic Intrusion Detection Problem

Effective intrusion detection is vital yet elusive. Despite many good intentions

and much effort between a White House Presidential Directive issued in 1990 and an-

other published in 2009, the fundamental vulnerability of electronic systems remains

largely unaltered. Such is the premise of [28], which also highlights the admission by

the NSA’s General Keith Alexander in the Spring of 2010 that even U.S. classified

networks have been penetrated [61].

Nation states loom large in the battle for cyberspace, and international tension
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is on display. Relatively benign evidence of this is seen in assessments of strategic

competitor’s network operations capabilities [92]. Of more immediate impact are

cases where such capabilities have been put to use. A specific example that recently

dominated headlines is Stuxnet. This worm, which gained fame for its disruption of

Iran’s nuclear production, is widely believed to have been produced by state-funded

organizations. It is one of the most sophisticated cyber weapons ever discovered [65].

Regarding the most sophisticated cyber weapon ever developed, the victims and the

public at large may never hear about it.

Mafia-style cyber-crime establishments are also rapidly expanding, giving rise to

pervasive phishing and botnet herding activities [6]. Adding further woe to the net-

work security practitioner, even script kiddies2 remain a threat with the public pro-

liferation of sophisticated scan and attack tools.

Three major classes of network threats include [139]:

1. Attacks that consume network resources, denying their use for legitimate pur-

poses;

2. Attacks that infiltrate systems, allowing attackers unauthorized access to system

resources, including sensitive data, data storage, privileged relationships with

other systems, and network connectivity;

3. Unauthorized vulnerability scans, providing attackers vital reconnaissance in

preparation for infiltrating activities

In truth, these three threats are mutually reinforcing. For example, a successful

scan allows an attacker to infiltrate networks with great stealth and precision; once

in control of multiple hosts, the attacker may use them to launch a distributed denial

2Script kiddies use tools and techniques developed by others, usually employing them randomly
and with little regard or even understanding of the consequences [115].
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of service attack on another target system or network. Alternatively, the attacker can

use these newly acquired assets to conduct further scans more efficiently / stealthily.

As another example, a clever attacker may launch a denial of service attack on a

highly visible service to divert the attention of security personnel from his infiltration

activities.

These dangers both elevate and implicate the computer network security industry.

Concepts such as ‘risk management’ and ‘formal solutions’ make contributions but

ultimately fall short of comprehensive defense [156]. At the core of any network attack

is simple misuse of technology made attractive by the ease with which anonymity is

maintained. To counteract this, perhaps one day network devices will only handle

digitally authenticated communications. In the meantime, development of better

malicious traffic detection techniques should help the online world cope as best it

can.

1.2 Scope of Investigative Domain

One way to cope involves elevating the viewpoint in order to gain a broader per-

spective of malicious activity traversing and impacting multiple, connected networks.

This community of networks perspective shares threat conditions among participants

to enable more effective local response [1]. Such a community of networks may arise

from a coalition of network owners, or it may fall under the ownership of a single

entity, such as a worldwide corporation, government agency, or military.

Therefore, the network of interest to this research is the Autonomous System

(AS)-level of the Internet. Each Autonomous System is an administrative domain,

comprised of one or more networks of routers, switches, edge devices, and other

physical elements, sometimes involving thousands of IP3 addresses. Each Autonomous

3The Internet Protocol specifies the rules for communication across networks at the router level.
A message sent using IP is a packet.
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System is assigned a number by the Internet Assigned Numbers Authority (IANA) for

inter-AS addressing. The Border Gateway Protocol (BGP) enables gateway routers

in different ASes to advertise the reachability of assigned IP networks and routes to

other IP networks.

The typical scenarios developed for our current research involve 100 nodes, each

abstractly representing an AS. In the real world, the number of organizations associ-

ated with a 100-node network of autonomous systems could number from one up to

100. Large organizations, such as the U.S. Department of Defense, have been assigned

well over 100 IPv44 Autonomous System Numbers (though not all are in use at all

times).

The lengths of the links connecting the nodes in typical scenarios range from one

to ten units, with implications for the geographical area represented. For example, if

one allows a single unit link length to represent the length of the connection between

two autonomous systems 200 miles apart or less, then the longest link length would

be 2, 000 miles. The propagation delay5 in this scenario ranges from approximately

one to ten milliseconds.

Attacks of interest include those that heavily impact the distribution of the traffic

arriving at any given node. These are:

• Scans

• Distributed Denial of Service Attacks (DDoS)

• Worms

These are discussed in more detail in Section 3.4.5 in connection with their simu-

lated design and implementation.

4Internet Protocol version 4, despite an address space insufficient to meet the demand, still
dominates in the networked world of 2011.

5Propagation delay measures the time required by the signal to traverse the link. Light travels
3.0× 108m/s.
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1.3 Research Goal and Evaluation Hypothesis

Our goal is to develop an effective flow-based, multi agent system for inter-AS

network attack classification.

It is our hypothesis that we can increase the effectiveness of a flow-based, multi

agent network attack classifier by doing the following:

• Employ reputation to motivate agents to move when perceived as not providing

useful information to peers;

• Decay the reputation to provide further impetus for agents to find the best

vantage points.

The validation of the hypothesis drives specification of the following research objectives

and associated evaluation benchmarks:

1. Develop an effective network simulation environment appropriate for the prob-

lem scope. We desire to simulate networks of autonomous systems at an appro-

priate level of abstraction, including network topology as well as normal network

traffic. As a qualitative benchmark, the environment should be complex enough

to permit a range of flow-based attacks, and present communications challenges

due to propagation delay and link congestion;

2. Validate the proper functioning of simulated malicious traffic. For qualitative

benchmarks, a DDoS should impede legitimate inter-node communications, a

scan should produce a report of potential vulnerabilities on targeted systems,

and a worm should demonstrate its ability to non-trivially self-propagate across

the network;

3. Validate the proper command, control, and communications in the multi agent

intrusion detection system. The second design iteration promises actual inter-
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process communication in our network simulation as well as a robust commu-

nications protocol for the multi agent system. Testing should demonstrate a

variety of communications failures and indicate whether the system handles

such failures gracefully and is able to resume normal operations autonomously;

4. Study the effects of several factors on classification accuracy. Factors include the

number of agents, the use of reputation decay, and more generally, whether the

reputation system is used at all. Our research development must quantitatively

assess the performance of at least one of the iterations of our multi agent system

under a variety of parameter values. In particular, we compare the system using

reputation to the system not using reputation to assess the impact of reputation

under various conditions.

1.4 Investigative Approach

Our research effort consists of two design iterations due to the complex nature of

developing ID systems. In each, a network simulation environment, simulation sce-

narios, and a multi agent system to classify current network activity are developed.

Network simulations employ topology and traffic models reflecting associated obser-

vations of the Internet. Self-organization in the multi agent systems is promoted via

the use of a reputation system and evolutionary algorithms for automatic discovery

of effective system parameter settings. The multi agent system in the first itera-

tion has received the benefit of classification performance evaluation as reported in

[73, 72]. The multi agent system in the second iteration is qualitatively validated to

demonstrate proper functionality of command, control, and communications.

The first investigative design iteration develops:

1. A basic network simulation environment implemented within a Discrete Event

Simulation (DES) framework;
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2. Scenarios for this network environment involving:

(a) 10-node networks;

(b) Background traffic patterns mimicking the distribution of traffic seen on

the actual Internet;

(c) DoS attacks;

3. A multi agent system for network attack classification employing reputation as

a means of governing agent mobility.

The second iteration represents an architectural redesign, but incorporates all

features from the first iteration and adds many additional features, including:

1. A more complex network simulation environment enabling interprocess commu-

nication;

2. 100-node networks with topological characteristics following those of real-world

AS networks;

3. Additional malicious scenarios including DDoS attacks, scans and worms;

4. A robust communications protocol, for the multi agent system, designed to

handle transmission losses and other errors.

1.4.1 Prospective Beneficiaries.

The envisioned customer of such a system deployed on real networks is a coalition

of the organizations associated with the 100 autonomous systems. Members of such

a coalition agree to facilitate agent mobility and communications across the AS-

network. There are several reasons for accepting this as plausible:
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1. In many cases, the number of organizations involved in an AS-network of this

size would be small, even including just one organization. These cases greatly

simplify the negotiations involved;

2. The agents are designed to collect and share only flow-related statistics, avoiding

the sensitivities that come up with sharing signature-based intrusion detection

data;

3. Participating organizations may be able to adapt better to conditions observed

across the AS-network, for example by changing BGP tables or adjusting traffic

filters.

1.4.2 The Use of Reputation.

In support of the fourth research objective, study the effects of several factors

on classification accuracy, we develop a reputation system. Our reputation system

is focused on evaluating agents’ ability to share “useful” information. It is used

both to determine strength of stochastic preference when agents are selected to share

information as well as a trigger for migration to another node.

To elaborate, each agent collects, from its host node, a series of local traffic statis-

tics. Some agents are selected to share summaries of these statistics with other peers.

Each agent then makes use of both local as well as shared information to make an

individual classification, which is sent to a central entity (controller). Each agent is

essentially “voting” on each cycle with respect to the overall classification of the re-

cently observed network activity. The reputation of each agent is affected by whether

shared information helped recipients vote in step with the majority, compared with

how the recipient would have voted using only local information, resulting in a rating

in each case. A rating table provides the values used to modify agent reputations for

various cases. When an agent’s reputation drops below a threshold, the controller
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instructs it to move to a different node. Upon moving, reputation is reset to the

average of the stationary agents.

Many questions arise with such a design proposal:

• Can this reputation scheme actually increase the system’s classification accuracy

over time, or does it tend to reinforce collectively bad behavior?

• Can agents coalesce to a single node so as to guarantee all shared information is

in agreement with local information, and thus avoid any single agent not voting

in step with the majority on account of shared information?

• This being a possibility, can a rating table be designed in such a way that it

counteracts this tendency?

• How does one find the values for the rating table leading to the best perfor-

mance?

• Whether agents share no information and receive no ratings, or share informa-

tion that never challenges recipients’ perspectives and receive neutral ratings, it

is possible that some agents can stagnate, performance-wise, over time. Reputa-

tions stabilize above the threshold for migration and exploration of the network

comes to a halt. If the reputation of each agent is decayed each cycle regardless

of received ratings, can this more effectively spur agents to find better vantage

points in the network leading to better system performance?

• What is the impact of the number of agents involved?

1.5 Thesis Overview

This chapter frames the problem and explains an approach to solving it. Chapter

I delves into the concepts involved in realizing this approach, including flow-based
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ID, reputation, and evolutionary computation. Chapters III details the design of the

latest iteration of our network simulation and our multi agent system called MFIRE.

Chapter IV highlights the differences between this and the first iteration of our net-

work simulation environment and multi agent system called MASNAC. Chapter V

presents the experimental performance analysis of MASNAC (first iteration design)

as well as the results of system validation for our second iteration efforts, including

MFIRE and its associated network simulation environment. Chapter VI concludes

with a summary of the research impact and opportunities for future research.

In presenting the second design iteration first (in Chapter III), we avoid traversing

twice that ground which is shared in both design iterations between concept and

implementation.

In the final analysis, while the multi agent system architecture provides an in-

novative design demonstrating the integration of ideas with high potential to con-

tribute meaningfully to the evolving ecosystem of intrusion detection systems, the

most important contribution is the developed network simulation environment. This

environment supports not only the investigation of the subject multi agent system,

but may be used for other network research investigations as well where the level of

abstraction is suitable for the purpose.
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II. Literature Review

Chapter I hinted at the range of threats to the productive use of Cyberspace.

Fortunately, there exists a cadre of network security practitioners working unceasingly,

evolving tools and techniques capable of beating back the binary barbarians. In

this document we propose a new, composite approach that deals with one aspect of

flow-based attacks. Specifically, it focuses on the challenge of recognizing 1) that a

flow-based attack is taking place; and 2) the essential nature of the attack in order to

summon the best response available. An innovative solution is designed and presented

in Chapters IV and III. This chapter prepares for that presentation by discussing first

the concepts and current research in critical areas germane to the flow-based attack

classification system.

One of the foundations in network security research is the modeling of networks

of interest. For example, modeling the Internet, that vast and ever-evolving network

of networks, is itself the subject of a robust body of research and is discussed in Sec-

tion 2.1. Pattern recognition techniques are essential to automated identification of

hostile network activity and are surveyed in Section 2.2; in particular, classification is

discussed as a subtopic of pattern recognition. Section 2.9 comments on the statisti-

cal evaluation of classification systems. The application of classification techniques to

computer network intrusion detection results in an Intrusion Detection System (IDS).

Section 2.3 reviews the features and architecture generally employed in these IDSes.

Section 2.4 presents the multi agent system paradigm, which applies distributed arti-

ficial intelligence to solve numerous problems, including problems affecting intrusion

detection. The next three sections deal with the problem of making a complex system

flexible and self-adaptive. Section 2.5 presents a methodology for examining system

intervention points to identify where efforts should be most fruitful. Section 2.6 sur-

veys the use of reputation as a means of improving individual and multi agent system
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performance in uncertain or even hostile environments. Section 2.7 discusses the ideas

and roles of evolutionary computation for identifying parameters that achieve ’good’

performance. Finally, the concepts of Self Organization and Emergence and their

implications for multi agent systems handling network security functions is presented

in Section 2.8.

With an understanding of these critical areas, one can better appreciate the design

development in Chapters III and IV.

2.1 Internet Modeling

The Internet is a network with nodes that are themselves networks. Each such

network consisting of routers and other networked devices under the same administra-

tive control is called an Autonomous System (AS). The routers in each autonomous

system that are responsible for forwarding/receiving traffic to/from other autonomous

systems are gateway routers. This inter-autonomous system routing is handled via

the Border Gateway Protocol (BGP). Though each AS may handle traffic internally

in unique ways, all rely on BGP as the glue that binds the Internet together. See [95]

for an overview of autonomous systems and BGP.

Clearly it is not appropriate to deploy untested defensive applications that operate

at the AS level of the Internet. Testing and evaluation must be carried out via

simulation, not only to reduce the operational impact on maintaining high levels

of service, but also to provide a variety of controlled conditions for analysis of the

system over a range of situations. Naturally we seek a balance between accuracy

and efficiency when modeling the Internet. The two principle modeling aspects are

topology and traffic.

See [90] for an illustration of this modeling as well as a testing process for eval-

uating DDoS countermeasures. We use different tools but a similar logical thought

13



process of seeking, in the first place, a simulation environment that captures the es-

sential properties of the real-world domain of interest. With such an environment, we

should have greater confidence in the performance evaluation of any system proposed

for deployment on the real Internet.

2.1.1 Modeling Limitations.

Before surveying some of the ways in which the topology and traffic of the Inter-

net have been modeled, it is important to appreciate the limitations of any model.

Inasmuch as there are entities whose qualitative behaviors require representation in

the simulation, ultimately one is dealing with qualitative simulation. As defined by

Kuipers [94], qualitative simulation is the “prediction of the possible behaviors con-

sistent with incomplete knowledge of the structure of the physical system.”

Some of the qualitative behaviors that require representation in our research in-

clude the actions of malicious and benign users of the Internet, as well as the engi-

neering decisions giving rise to observed network topologies.

Say and Akin [134] prove that no qualitative simulation is both sound (“no trajec-

tory which is the solution of a concrete equation matching the input can be missing

from the output”) and complete (produces no spurious prediction for any particular

input). The problem traces to the inherent incompleteness of mathematics itself1.

Despite this limitation, repeated refinement of the model allows development of a

solution that handles most, if not all, practical input. Our modeling process, demon-

strated over the two iterations discussed in Chapters IV and III, is inspired in part

by Hildebrandt et al. [75], who advocate starting with a simple model and stepwise

refining that model until arriving at the intended real system.

1Kurt Gödel published proof in 1931 [62] that all formal systems sufficiently powerful to represent
addition and multiplication of positive integers and zero (i.e. mathematics) include propositions
which cannot be proved or disproved within the system.
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With eyes thus opened, it is prudent to proceed to a discussion of the issues

involved in Internet AS-level topology and traffic modeling.

2.1.2 Modeling Internet Topology.

In order to create a suitable environment for performance evaluation, one must

take into account topological characteristics. As explained by Yook et al. [154],

the performance of protocols designed for the Internet is greatly influenced by the

network topology. “Protocols that work seamlessly on prototypes fail to scale up,

being inefficient on the larger real network.” The real challenge to Internet topology

modelers lies in capturing the dynamic characteristics that describe and predict how

the topology will grow over time, thus allowing protocols to be evaluated against

realistic predictions of the Internet several years into the future.

The early years of Internet topology modeling relied on random graphs ([26],

[49]). Waxman’s model ([149]) created graphs probabilistically with respect to the

Euclidean distance between nodes, and came to be one of the most popular network

models. While it represented small early networks (e.g. ARPANET) successfully, the

Internet grew in size and complexity, and the modeling of this “strange beast” needed

an overhaul.

Doar recognized this [45] and advocated modeling of different hierarchical levels

of networks (e.g. LAN, WAN, MAN). He worked with Calvert et al. to remedy the

prevalent use of the Waxman model, which was not intended as a general purpose

network topology model, but was designed specifically to compare Minimum Steiner

Tree algorithms [30]. The remedy treats intranetwork connectivity separately from

internetwork connectivity. Two topology generators resulting from this work are Tiers

[45] and Transit-Stub [88], [157].

But it was 1999 that proved to be the watershed year in Internet topology mod-
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eling. That year, Faloutsos et al. [52] discovered that the Internet is apparently a

scale-free network with a power-law degree distribution. They provide three power-

laws that characterize the inter-domain topology measurements derived from BGP

routing tables collected in 1998:

• Rank exponent: the outdegree, dv, of a node v is proportional to the rank of

the node, rv, to the power of a constant, R:

dv ∝ rRv (1)

The rank rv of a node v is the resulting sequence index when the nodes are sorted

in decreasing order of outdegree. They found typical experimental results for R

to be approximately −0.8. In other words, they discovered a natural stability

to the dominance ratio, in terms of outdegree, of nodes with higher outdegree

to nodes with lower outdegree.

• Outdegree exponent: The frequency, fd, of an outdegree, d, is proportional to

the outdegree to the power of a constant, O:

fd ∝ dO (2)

This describes the distribution of the outdegree of Internet nodes. Faloutsos et

al. [52] measured values for O ranging from −2.2 to −2.15. Lower degrees are

more frequent, which observation is quantified by this power-law.

• Eigen exponent: The eigenvalues, λi, of a graph are proportional to the order,

i, to the power of a constant, ε:

λi ∝ iε (3)
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These eigenvalues are calculated using the graph’s adjacency matrix. Faloutsos

et al. [52] observed values of −0.47, −0.50, and −0.48, which they deem “prac-

tically equal.” Despite the increase in the size of the Internet over 1998, the

fact that the eigen exponent remained nearly constant suggests that it captures

an essential property of the Internet that characterizes each of their samples.

At about the same time, Barabási and Albert published a paper [14] that came to

be hugely influential the burgeoning field of network science. They observed power-

law relationships for a wide variety of networks in fields ranging from computer science

to molecular biology. Their claim: that, “independent of the system and the identity

of its constituents, the probability P (k) that a vertex in the network interacts with

k other vertices decays as a power-law, following P (k) ∼ k−λ.” This result called

for a departure from existing network models to models that incorporate growth and

preferential attachment, which came to be known as BA models.

Barabási and Albert (and later Crucitti et al.) then incorporated the Faloutsos

results into a study of the attack tolerance of complex networks [4, 40], concluding

that because the connectivity of the Internet’s AS-level architecture follows a power-

law distribution, that it must be highly resilient to random attacks but vulnerable

to attacks targeting select ‘core’ nodes. This is because most of the nodes in such a

model have at most a handful of links, while a select few have most of the links.

Barabási later joined Yook to characterize the Interent further and demonstrate

the inadequacy of existing topology models [154]. Eventually, BA models started

popping up [29, 13, 108, 117, 153]. Efforts to refine the original BA model continue

today as power-law-based Internet topology generators proliferate.

This power-law approach is not without its critics. Willinger is particularly stri-

dent in his opposition [93, 151]. At issue: whether available measurements and their

analysis and modeling efforts support the claims that are made by models based
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on power-law node distributions / preferential attachment. Specifically, observe the

following problems:

1. Making reliable measurements spanning multiple Internet service providers or

autonomous systems is inherently problematic due to a lack of a central author-

ity.

2. Making matters worse is that data sets originally collected for a specific research

purpose are then used as primary sources in other research efforts.

3. Compounding this error is the subsequent use of statistical rigor beyond what

the quality of available measurements justifies.

4. Finally, there is a problem with how model validation in networking research

typically happens. Having arrived at a set of statistics that are already based on

dubious sets of measurements, any models that demonstrate consistency with

these statistics are declared valid. The problem is that, in many cases, alterna-

tive models with a wide range of structure can also be produced with the same

level of consistency, and no criteria is used to rule them out. Furthermore, it is

rarely if ever the case that an independently-compiled dataset and a separate

set of statistics are used for model validation.

Willinger’s opposition [93] to the Faloutsos brothers’ conclusions [52] with respect

to the AS-level Internet topology involves all of these things. The datasets used in [52]

came from The National Laboratory for Applied Network Research (NLANR), which

constructed inferred AS connectivity maps by relying on full BGP routing tables

collected by the Route Views Project at the University of Oregon. The purpose of

this project: “to respond to interest on the part of operators in determining how the

global routing system viewed their prefixes and/or AS space”. Yet ever since [52], the
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resulting datasets have been used to infer Internet AS-level topology. Whether this

is legitimate or not is impossible to decide given the lack of any relevant metadata

for these datasets.

At best, all that can be concluded from the BGP-derived AS maps are “Pareto-

type principles; that is, a small number of nodes have many neighbors, while most

nodes are connected to only a small number of neighbors” [93].

What is advocated is that instead of using data fitting as the primary driver of

model selection and validation, one should “rely on domain knowledge and exploit

the details that matter when dealing with a highly engineered system such as the

Internet” [151].

An interesting intersection of this proposed approach and the field’s persisting

enthusiasm for power-law models is found in [50]. The authors successfully gener-

ate topologies that exhibit the power-law relationships found in [52], but instead of

the common, purely stochastic approach, these properties arise from a simple multi-

objective optimization, involving “last mile” connection costs and transmission delays

as measured in hops.

This model is known as Fabrikant-Koutsoupias-Papadimitriou (FKP) and cap-

tures these two objectives in the following way. From [138], each node i arrives at a

uniformly random point and attaches itself to the node j that minimizes the weighted

sum

minj<i{α · dij + ecc(j)} (4)

In this equation, dij is the Euclidean distance between the nodes and represents

the “last mile cost.” The relative importance of this objective is controlled via the

weight α. The second term is the eccentricity of j and captures the distance from j

to the center.
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Spatharis et al. present an updated treatment of FKP with several extensions

[138]. One extension is the Controlled Distance (CD) Model. The goal of this ex-

tension is to address the need for edges between nodes that are not quite leaves, nor

particularly central, but are of intermediate centrality. As each node i is added to the

network and linked to the node j according to equation 4, a second edge is attached

from j to another node k minimizing

mink{α · djk + ecc(k)} (5)

over all k such that the hop distance from j to k is at most a constant c.

This model decreases the power law exponent while having high average degree

and several leaves. The authors of [138] declare this to be, in many ways, the “best

performing” of their models in achieving similarity to the Internet’s AS graph. This

model and various alternatives are packeged by the authors in the package TopGen.

Other topology generators include:

• Tiers [45]

• GT-ITM - Georgia Tech Internetwork Topology Models [30]

• Inet [153]

• nem [108]

• BRITE [117]

• GDTANG - Geographic Directed Tel Aviv University Network Generator [13]

• RealNet [37], [36]

RealNet is one of the more recent additions to this list. It relies on publicly

available datasets including BGP tables and traceroute records, as did [52], but ad-
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dresses some of the problems inherent in these datasets and does not attempt to fit

specific power-law-based statistics. For example, it gives direct consideration to the

IP-aliasing problem, whereby more routers may be inferred than actually exist be-

cause each router has a different IP address for each of its interfaces. It also factors

in likely policy relationships between neighboring autonomous systems.

In summary, while it is agreed that the AS-level topology of the Internet exhibits

Pareto-type principles, the power-law approach to modeling the AS-level topology

growth is by itself inadequate. An approach involving domain knowledge and an

engineering mindset is preferred. The ideal topology modeling approach will appease

both 1) the engineers responsible for implementing actual Internet topologies, as well

as 2) the protocol and application developers seeking validation that their efforts will

perform adequately on the Internet for at least several years. Currently, this ideal

approach is elusive. In the meantime, FKP provides a reasonable balance; RealNet

is intriguing but not available for the current research.

2.1.3 Modeling Internet Traffic.

Just as important as modeling topology is the modeling of the traffic that rides on

it. The history of traffic modeling begins with Poisson distributions, and ends up with

models that exhibit self-similarity [19]. As has been conjectured for the Internet’s

topology, the Internet’s traffic has actually been shown with more statistical rigor

to have certain scale-invariant statistics. The common adjective applied to Internet

traffic is “bursty” - sharp peaks are observed in the volume of traffic no matter the

time scale, which is not the case for Poisson distributions. One can set the rate λ of

a Poisson process to emulate burstiness at a target time scale, but as the time scale

is increased while λ is held constant, the peaks and troughs in activity flatten until

they disappear altogether [152].
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Frost and Melamed [57] provide some formalism geared for a Discrete Event Sim-

ulation (DES) environment, in which events are modeled as happening at discrete

time steps [12]. At a particular node, traffic is modeled as arriving in a sequence of

arrival instants T1, T2, . . . , Tn, . . .. Equivalent representations include counting pro-

cesses and interarrival time processes. A counting process is of the form {N(t)}∞t=0,

where N(t) = max{n : Tn ≤ t} is the number of traffic arrivals in the interval (0, t].

For the interarrival time process, {An}∞n=1, where An = Tn − Tn−1 is the length of

the time interval between the (n − 1)th and the nth arrivals. Equivalence of these

representations is:

{N(t) ≡ n} ≡ {Tn ≤ t < Tn+1} =

{
n∑
k=1

Ak ≤ t <
n+1∑
k=1

Ak

}

since Tn =
∑n

k=1 Ak.

The amount of traffic arriving at the node at Tn is modeled as Bn, which is a

member of the non-negative random sequence {Bn}∞n=1, stochastically independent

from {An}.

It is commonly the case in today’s context of high-bandwidth networks (as com-

pared to 1994) that, across most nodes, one can assume a constant stream of traffic,

particularly for the nodes of the AS-level graph of the Internet. In other words, An

is usually 1. Let us consider how this situation may arise naturally from Frost and

Melamed’s formulation. If {An} is generated for one timescale, then there is a “zoom

out factor” for which one could generate {A′m} such that P (A′m = 1) is arbitrarily

high, and it may be more useful to focus purely on the generation of {B′m}.

Let Ti represent an arrival time in the orginal time scale, and T ′j represent an

arrival time in a time scale zoomed out by a factor of λ. To simplify matters, we

allow B′j = 0. Then T ′j = j, and
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Figure 1. Probability density function for Pareto distribution, α = 1.0, b = 1.0

B′j =

(λ+1)j∑
i=λj

Bi

Frost and Melamed focus on the {An} representation and use it to describe a

broad collection of traffic generation models, with varying emphasis on demonstrat-

ing autocorrelation. This matters because of their explanation that “strong positive

autocorrelations are a particularly major cause of burstiness.” Since bursty traffic is

expected to dominate broadband networks, “models that capture the autocorrelated

nature of traffic are essential for predicting the performance of emerging broadband

networks” [57].

The Poisson model does not do this, and was only applied to Internet traffic in

the first place because it had enjoyed decades of success describing telephonic traffic

[152]. Ironically, this is akin to the misadventures in topology modeling described in

Section 2.1.2, where datasets collected with one purpose in mind were commandeered

for another. In [152], Willinger and Paxson are advocates of turning to better, fractal-

like traffic distribution models. This is the same Willinger that today decries the use

of power-laws to model Internet topology (see Section 2.1.2). It turns out that for

traffic, the case for scale-invariance is much more justified.
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The Pareto model exhibits scale-invariant behavior [63]. It has a density function

P (X) = αbα

xα+1 , x ≥ b, which has a heavy tail [90]. Figure 1 shows an example for

α = 1.0, b = 1.0. Willinger and Paxson explain that this heavy tail accounts for

the fractal nature of aggregated network traffic [152]. To generate a random Pareto-

distributed sample, inverse transform sampling is used. Given a random variable U

drawn from the uniform distribution (0, 1), T given by

T =
b

U
1
α

(6)

is Pareto-distributed [44].

This concludes discussion of network topology and traffic modeling. One could

also consider models that generate workloads, which may be appropriate if the effects

of traffic on servers are considered. An example effort to generate representative web

workloads for network and server performance evaluation is presented in [15]. Also,

one could model the spread of malicious traffic. For example, many models have been

built for worm propogations, [35, 104, 147, 163, 164, 84, 135].

In any case, given a model, the next question to consider is how to implement the

model for simulation. This is consequently the subject of the next section.

2.1.4 Discrete Event Simulation.

The preceding discussion illustrated the challenges particular to modeling the In-

ternet’s topology and traffic, for the purpose of producing a “useable” simulation. By

“useable”, we mean that applications tested under such a simulation generate behav-

iors tolerably isomorphic to what is seen in a real-world operational environment.

This section focuses on the underlying simulation framework. Specifically, this

section is about Discrete Event Simulation.

This method views the simulation as being composed of a chronological sequence of
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events, each of which occurs in an instant and changes the state in the system, possibly

resulting in more events being scheduled. Comprehensive treatment of Discrete Event

Simulation is given in [12].

Components of DES systems include:

• Clock - The simulation keeps track of current simulation time in appropriate

measurement units, but unlike in real time simulations, time in a DES jumps

from one instantaneous event to the next.

• Schedule - The set of events to handle, typically implemented as a priority queue

sorted by event time.

• Random-Number Generator - pseudorandom, which is desired in order to sup-

port a rerun of a simulation with exactly the same behavior

Typical usage of a DES includes the gathering of statistics, for which facilities may

be provided, and the specification of a stopping condition. As may be the case with

continuous- but not real-time simulation, a discrete event simulation runs at a rate

that is not tied to the real-world clock. When resources permit, simulations may be

run potentially much faster than real time, which is useful for collecting large amounts

of statistics. In other cases, it may be desired that simulations run much slower than

real time, perhaps paused for an extensive period of time via checkpointing, which is

useful for direct observation and analysis of system dynamics.

Parallelization of DES is discussed extensively in [58]. More recently, Park and

Fishwick present their work using graphics processing unit-based clusters in [125].

2.1.4.1 Popular DES Engines.

Some of the more well-known DES options and their areas of emphasis are:

• OMNeT++, [145]: network simulation
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Figure 2. Basic elements of the MASON model and visualization layers

• MASON, [106]: agent-based systems simulation

• CNET, [114, 113]: network simulation

• GloMoSim, [158]: large-scale wireless networks

• ns2, [112]: network simulation

• PARSEC, [11]: parallelization

2.1.4.2 MASON Overview.

MASON, developed at George Mason University and presented in [106], is ‘a

single-process DES core and visualization toolkit written in Java’. It is flexible

enough that it can be used for a wide range of simulations, but emphasizes sup-

port for “swarm” simulations with up to millions of agents. It is fast and portable

and produces guaranteed replicable results, courtesy of checkpointing facilities.

The underlying model runs in a layer independent of the visualization layer. Thus,

while the visualization facilities enable easy interaction with simulations, simulations

may run without visualization, or the visualization can be changed at will, perhaps
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Figure 3. A general perspective of a pattern recognition system

according to the preferences of the observer. The basic elements of the MASON

model and visualization layers are presented in Figure 2.

MASON has been used successfully for applications ranging from physics demon-

strations to cooperative target observation in unmanned aerial vehicles to the testing

of ant foraging algorithms.

2.2 Pattern Recognition

The preceding sections have laid the groundwork for a simulation framework that

will adequately reflect the contested domain of the Internet. Ultimately, the purpose

of the present research is to automate the detection and classification of malicious

network activity. If the classification is accurate, precise, and timely, the malicious

activity may be counteracted.

The fact that legitimate traffic has been characterized as ‘bursty’ lends confidence

to the idea that deviations from the emergent features of legitimate, bursty internet

traffic may reveal the presence of anomalous (and potentially malicious) traffic, using

techniques from the broad field of pattern recognition.

Authoritative texts on pattern recognition include [46], [74], and [24]. A general

description of a pattern recognition system includes the elements depicted in Fig. 3.

We generally rely on the notation found in [74] in the following discussion.

Preprocessing formats the data, possibly performing some filtering in the case of
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noise or some system or environmental anomaly.

Feature generation, sometimes referred to as feature extraction, is the transforma-

tion of raw data into derived data points that may facilitate the characterization of

the observed process. One can even use the raw data itself for feature measurements.

Commonly, features are statistical measurements of the raw data or may be the re-

sult of passing the raw data through a mathematical transformation (e.g. Fourier

coefficients of a signal or wavelet coefficients of some image). The feature or vector

of features is represented as X. If X is a vector, it has p elements, and components

are accessed via subscripts Xj.

Dimensionality reduction, or feature selection, filters the available features with

the premise that not all features are useful. In fact, some features may even be

harmful (misleading). Even if all features are useful, resource limitations, in terms

of computation, bandwidth, or storage, may require filtering the least beneficial in-

formation prior to performing clustering, classification, or regression. The feature

selection vector may be represented as ~σ ∈ {0, 1}p.

Clustering, classification, and regression represent the three fundamental prob-

lems of pattern recognition, one or more of which must be addressed by any pattern

recognition system.

Clustering seeks to identify the natural groupings of the data. This effort can

involve considerable subjectivity. Typically, the number of groupings or clusters is

not known beforehand. The solution is to either simply specify the desired number of

clusters and evaluate the resulting cluster assignments, or define some distance-based

threshold from which the number of clusters is derived.

In clustering, we typically require a measure of dissimilarity dj(xij, xi′j) between
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values of the jth attribute. Then

D(xi, xi′) ,
p∑
j=1

wj · dj(xij, xi′j);
p∑
j=1

wj = 1.

is the dissimilarity between objects i and i′ given the inputs xi, xi′ and weight vector

w. Usually, dj(xij, xi′j) = (xij−xi′j)2, but other choices are possible, or even required

in the case of nonquantitative attributes [74].

Clustering is the search for an encoder C(i) that assigns the ith of N observations

to one of K clusters. An encoder may be evaluated by measuring the between-class

scatter to within-class scatter ratio, B(C)
W (C)

. Between-class scatter is defined as

B(C) ,
1

2

K∑
k=1

∑
C(i)=k

∑
C(i′)6=k

d(xi, xi′)

while within-class scatter is

W (C) ,
1

2

K∑
k=1

∑
C(i)=k

∑
C(i′)=k

d(xi, xi′)

We desire high B(C)
W (C)

in order to achieve the goal of high between-class scatter and

low within-class scatter, thus establishing clusters with well-defined boundaries [74].

Classification is a process that assigns one of a discrete number of labels to each

data point (input vector). A is the ‘true’ output and takes values from the set A. The

classifier is Â and should also take values from A. Regression seeks to model some

continuous process (function). The output of the function being modeled is denoted

Y and takes values from some continuous set, such as R, and a predictor for Y is Ŷ

[74].

Unlike the unsupervised learning technique of clustering, classification and re-

gression as supervised learning techniques require training data in which inputs are
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associated with known output (e.g. the ‘correct’ label or value corresponding to each

sample in the training data). Based on the specific classification or regression tech-

nique selected by the system designer, the system derives the necessary parameter

values for a process that reliably transforms the training input into the desired output.

This notion is formalized as the minimization of Expected Prediction Error (EPE):

EPE , E[L(A, Â(X))] (7)

L is a loss function, and expectation is taken with respect to the joint distribution

P (A,X). With K = |A| classes, the loss function may be represented as a K × K

matrix L. This loss matrix has values of zero on the diagonal. Everywhere else, a non-

zero value L(k, l) indicates the penalty for misclassifying an observation as belonging

to Al when it actually belonged to Ak.

Hastie et al. [74] show that by conditioning on X, we can rewrite 7:

EPE = EX

K∑
k=1

L[Ak, Â(X)]P (Ak|X) (8)

When the loss function is zero-one, meaning that a single unit penalty is assessed

for any misclassification, the intuitive guidance for Â(X) is:

Â(X) = Ak if P (Ak|X = x) = max
a∈A

P (a|X = x) (9)

In other words, the classification output should be the most probable class given the

input (Bayes classifier). Naturally, what makes this difficult is the fact that one has

to estimate the probabilities using a limited set of data.

Kotsiantis reviews several of the more popular classification techniques [91]. One

of these is the Support Vector Machine (SVM), which is used in this research. For
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mathematical details, the reader is referred to [91, 143] and [74], but the idea is to

find the hyperplane that separates the training data with the maximum margin - the

distance on either side to the nearest samples.

The SVM is preferred in our current research due to its high generalization per-

formance without the need to add a priori knowledge, even in the presence of many

features in the input space [34].

The first iteration of our research employs a simpler technique known as the

Minimum Distance Classifier (MDC) [56]:

Â(x) = minak∈A‖x− a′k‖ (10)

where a′k is the prototype or sample class mean of class Ak. That is, for 1 ≤ j ≤ p, and

given a sample set X, a′kj is the arithmetic mean of values xj for all x ∈ X|A(x) = Ak.

The MDC technique is very simple and works well when the distance between

class means is greater than the typical variance within each class [56].

Regardless of the technique, one of the issues confronting the designer of a pattern

recognition system is how to avoid overfitting, or ‘fitting to the noise.’ The wrong

approach to training the system can result in a system that performs well on the

training data but performs poorly on other data sets, demonstrating a lack of general

applicability. Two contributing aspects of this are bias and variance. Bias marks

the difference between the sample mean and the true mean, and variance is simply

the measure of variability in the sample set. Large training and validation sets that

accurately represent the target domain can address all of these issues, but obtaining

sufficient data may be prohibitively expensive or otherwise impossible. Thus, ingenu-

ity in compensatory techniques may be required if it is desired to accurately predict

the error of a proposed classifier.

One such compensation technique is K-fold cross-validation. This approach splits
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the data into K roughly equal-sized parts. For each of K rounds, one of these parts

is set aside for validation while the rest are involved in training or fitting the model.

The errors from all rounds are combined for the final cross-validation estimate of the

prediction error. Specifically,

CV (â) ,
1

N

N∑
i=1

L(ai, â
−κ(i)(xi))

where â is the fitted classifier, N is the number of samples available, L is the loss

function as before, and κ is an indexing function that indicates the partition to which

a given observation is allocated for the purposes of this cross-validation technique.

The term â−k(x) denotes the fitted classifier trained with all but the kth partition of

the data [74].

The choice of K is reflective of the bias-variance tradeoff that is so common in

pattern recognition: higher K (maximum value is N) yields lower bias for the true

prediction error, but higher variance. Common values of K are five and ten [74].

If one wishes simply to determine the optimum ratio of training set to validation

set, Guyon gives the following guideline [67]: let the ratio of the validation set size

over the training set size scale like the square root of the complexity of the second

level of inference (minimizing the validation error) over the complexity of the second

level of inference (minimizing the error rate on the training set).

2.2.1 Feature Selection.

As noted by Gates at al. in [66], the three principle objectives of feature selection

are: 1) improving prediction performance; 2) enabling faster, more efficient prediction;

and 3) providing a better understanding of the underlying process that generated the

data.

One of the primary reasons feature selection has the potential to greatly improve
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prediction performance is that it directly confronts the curse of dimensionality [22].

Hastie et al. [74] examine some of the many manifestations of this problem. Es-

sentially, such manifestations arise from the fact that in order to maintain the same

sampling density enjoyed in a lower dimension, the number of samples must increase

exponentially as one moves to higher dimensions. Usually, the number of samples

practically attainable is far fewer than necessary to maintain the desired sampling

density. Some of the consequences of sparse sampling in high dimensions are:

• Techniques that rely on information gleaned from local neighborhoods (e.g. k-

nearest neighbors) break down. In low dimensions, it may be possible to form

local neighborhoods that cover some percentage of the sample population. But if

one desires to cover the same percentage in high dimensions, the neighborhood

ends up covering most of the range of each input variable and is no longer

local. If instead the imperative is to strive for truly local neighborhoods in high

dimensions, the number of samples involved in the characterization of each

neighborhood shrinks and variance jumps.

• All sample points are close to an edge of the sample space. This makes interpo-

lation impossible. One must extrapolate from neighboring sample points, which

results in predictions with much greater uncertainty.

These issues motivate a focus on a reasonably-sized subset of the available features.

Finding the optimal subset, however, is known to be NP-hard [5]. Consequently,

feature selection techniques typically involve heuristics that lead to “good” quality

feature subsets in a reasonable amount of time (i.e. polynomial in the number of

features).

Feature selection techniques are typically categorized as filter, wrapper, or embed-

ded methods, discussed respectively in Sections 2.2.1.1, 2.2.1.2, and 2.2.1.3.
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2.2.1.1 Filter Methods.

A filter method typically involves some notion of feature ranking independent of

the choice of the predictor. This is computationally efficient because it requires only

the computation of p scores and sorting the scores. It introduces bias but may have

considerably less variance compared to other methods and is therefore robust against

overfitting [66, 74]. Feature ranking methods include analyzing performance as a

single variable classifier and information theoretic ranking criteria.

These filter techniques can be useful but also incur limitations. The underlying

assumption is that variable dependencies can be ignored, but in practice, this is not

always the case. Guyon and Elisseeff [66] provide examples in response to three

probing questions:

1. Can presumably redundant variables help each other? (yes; independently and

identically distributed variables are not truly redundant)

2. How does correlation impact variable redundancy? (Perfectly correlated vari-

ables are truly redundant and provide no performance gain, but very high vari-

able correlation or anti-correlation does not mean absence of variable comple-

mentarity.)

3. Can a variable that is useless by itself be useful with others? (Yes. In fact, even

two variables that are useless by themselves may be very useful together.)

Methods that score variables individually and independently of each other are at

a loss to determine which combination of variables would give the best performance.

Nevertheless, for combining computational efficiency with reasonable performance, as

well as general applicability across a range of classification algorithms, filter methods

can work well in practice.
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A common technique for filtering features involves ranking them according to how

well they separate sample distributions collected from two classes. The Bhattacharyya

distance [23], named after the mathematician, is a measure of the distance between

two sample distributions. If two sets of samples are produced by the same process,

the estimated distributions should be very close, and the Bhattacharyya distance near

zero. Formally, for discrete probability distributions p and q over the same domain

X, the estimate of the Bhattacharyya distance DB(p, q) is:

DB(p, q) , −ln(BC(p, q)) (11)

where

BC(p, q) ,
∑
x∈X

√
p(x)q(x) (12)

is the Bhattacharyya coefficient. Simply, for each value of x ∈ X found in both

sample sets p and q, BC(p, q) increases, up to a maximum of 1 when p(x) = q(x) for

all x ∈ X. In this case, DB(p, q) = 0. Conversely, as the limit of BC(p, q) approaches

0, observe that DB(p, q) increases without bound.

2.2.1.2 Wrapper Methods.

Wrapper methods test feature subsets against the chosen learning machine, which

is regarded as a black box. Questions include 1) how to search the space of all possible

variable subsets; 2) how to assess the prediction performance of a learning machine

to guide the search and halt it; and 3) which learning machine or predictor to use

(see [89]).
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2.2.1.3 Embedded Methods.

Embedded methods contrast with both filter methods, which employ no learning

whatsoever, and wrapper methods, which are general techniques that may be applied

to any classifier. In embedded methods, the structure of the class of functions under

consideration plays a crucial role, and techniques are developed that are specific to

certain classifiers. See [101].

2.3 Intrusion Detection With Emphasis on Flow-based Techniques

The previous section introduced and surveyed the field of pattern recognition,

including classification systems in particular. Our research applies classification tech-

niques to the detection and characterization of malicious activity on a simulated

subset of the AS-level Internet.

Recognizing malicious activity on a computer network is called Intrusion Detec-

tion, and it is the job of the Intrusion Detection System (IDS). An IDS is characterized

by the techniques employed to accomplish this task. Axelsson provides an IDS survey

and taxonomy [7], which is the basis of some of the following discussion.

A semantic-based IDS examines packets for strings matching signatures of previ-

ously identified malicious activity. A flow -based IDS focuses attention on the sizes

and frequency of packets associated with source-destination communication sessions

to detect whether the communication pattern is evidence of malicious activity. A

behavior -based IDS observes potential victim devices for deviations from ‘normal’

behavior, which is taken as evidence of an attack.

Another way to characterize an IDS is according to whether it employs self-

learning or is programmed, or some combination thereof. Other IDS characteristics

include:

• real- or near real-time detection / non-real-time detection
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• process data continuously / process data in batches at regular intervals

• rely on network data - Network Based IDS (NIDS) / rely on host-based security

logs - Host Based Security System (HBSS)

• passive response / active response

• process data centrally / process data distributively

Axelsson defines the effectiveness of an IDS as the degree to which it can correctly

classify intrusions and avoid false alarms. In the simple binary case, where one simply

needs to know whether a traffic sample is malicious or benign, the classification process

can be analyzed in terms of its performance in four measures [121]:

• probability of declaring the sample malicious when it is, in fact, malicious (true

positive);

• probability of declaring the sample benign when it is truly benign (true nega-

tive);

• probability of declaring the sample benign when it is actually malicious (Type

I error or false negative);

• probability of declaring the sample malicious when it is really benign (a Type

II error or false positive).

In both semantic- and flow-based approaches, packets may be sampled when re-

sources cannot keep up with heavy volume and fast connections. The impact of this

lossy sampling is analyzed in [27, 109, 165].

Our research focuses on flow-based intrusion detection. For an overview of this

approach, see Sperotto et al. [139]. The preferred definition of IP flow comes from the
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IP Flow Information Export (IPFIX) working group within the Internet Engineering

Task Force (IETC) [129]:

A flow is defined as a set of IP packets passing an observation point in
the network during a certain time interval. All packets belonging to a
particular flow have a set of common properties.

These common properties are called flow keys. Typically, they are: source and

destination IP addresses, source and destination port numbers, and the IP protocol

[139].

Sperotto asserts that flow-based intrusion detection is appropriate for dealing with

flow-based attacks, such as:

• Scans

• DDoS

• Worms

• Botnets

Notable applications of this detection technique include:

• a decision tree-based abnormal traffic detection method that operates on flows

[85]

• scan detection using logistic regression modeling [60]

• worm detection using entropy [148]

• real-time analysis of flow data in TOPAS [124]

• high-speed flow-based intrusion detection based on sketches [59]
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• detection of super sources and destinations in high-speed networks [160]

• network-wide anomalies in traffic flows [100, 98, 99, 106].

2.4 Multi Agent Systems With Emphasis on Network Applications

A common design question for any IDS is how to maximize the benefits and min-

imize the penalties associated with network-based as well as host-based approaches.

The Multiagent System (MAS) paradigm offers a way to accomplish this, with the

added advantages of flexibility and robustness provided by this approach.

What is a multiagent system? First, what is an agent? Russell and Norvig [133]

require several properties: autonomous operation, ability to perceive the environment,

persistence over a long period of time, ability to adapt to change, and ability to create

and pursue goals. These goals are typically in support of a broader objective. Franklin

and Graesser [55] provide a survey of definitions for software agents, and an associated

taxonomy.

If one agent is good, in many cases more are better. A multiagent system, nat-

urally, is a collection of agents that collaborate, explicitly (e.g. via cooperation) or

implicitly (e.g. via competition) to achieve a broad objective or series of objectives.

In a MAS with mobile agents, all hosts in the network must have a generic agent

platform installed which provides the environment in which the agent executes. Agent

migration then consists of sending agent state to a remote process responsible for

reinstantiating the agent.

Jansen lists some specific advantages of a mobile, agent-based IDS [82]:

• Overcoming network latency - if an agent is present on a node requiring remedial

action, the agent can respond more quickly than if action must be initiated by

a central coordinator
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• Reducing network load - Communication requirements are reduced by allowing

agents to process sensor data locally, instead of requiring each node to send sets

of sensor observations to a central processing location. Sharing the results of

local processing incurs a relatively light demand on bandwidth.

• Autonomous execution - surviving agents continue to operate when part of the

IDS fails

• Platform independence - agent platforms with standard interfaces may be writ-

ten for multiple operating systems to allow effective MAS execution in a het-

erogeneous OS environment

• Dynamic adaptation - the system can be reconfigured during run-time in a

variety of ways. The mobility of the agents allowing them to seek effective

positions is a reconfiguration. Agents can clone themselves or request assistance

from other agents in high demand situations. Selected agents can be replaced

while non-selected agents continue to operate. One can also update repositories

of behaviors and parameters which agents access periodically.

Potential disadvantages include decreased performance and/or increased resource

consumption when mobility is implemented ineffectively. Also, since each agent is a

member of a trusted network that, if compromised, could provide the attacker consid-

erable leverage, digitally signed communications (including migrations) are essential.

2.5 System Intervention Points

The preceding section provided an overview of multi agent system. This section

examines potential system intervention points to consider when setting up such a

system. Indeed, any multi agent system for network intrusion detection is invariably
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complex. Configuring the system’s parameters in order to maximize effectiveness and

efficiency is difficult but critical.

Meadows offers a list of intervention or leverage points that may represent op-

portunities for change when considering how to improve system performance [116].

By system, she refers to the generic definition as opposed to the multi agent sys-

tems discussed in the previous section. Meadows’ research is concerned with large

and sometimes abstract systems, including corporations, economies, living organisms,

cities, and ecosystems. Regardless of the type of system with which one is specifically

concerned, if it has any complexity to it at all, certain abstract notions from the field

of systems analysis may be applied to guide investigations into the system. The pur-

pose of such investigations is to understand and/or change the system in some way.

They are “guided” in the sense that one seeks to arrive at some level of understanding

or achieve some effect in an efficient way. To determine where to intervene in a system

for greatest effect, Meadows lists the potential leverage points in increasing order of

effectiveness [116]:

12. Constants, parameters, numbers (e.g. subsidies, taxes, standards)

11. The sizes of buffers and other stabilizing stocks, relative to their flows

10. The structure of material stocks and flows (such as transport networks, popu-

lation age structures)

9. The lengths of delays, relative to the rate of system change

8. The strength of negative feedback loops, relative to the impacts they are trying

to correct against

7. The gain around driving positive feedback loops
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6. The structure of information flows (who does and does not have access to what

kinds of information)

5. The rules of the system (such as incentives, punishments, constraints)

4. The power to add, change, evolve, or self-organize system structure

3. The goals of the system

2. The mindset or paradigm out of which the system–its goals, structure, rules,

delays, parameters–arises

1. The power to transcend paradigms

For a detailed explanation of the terms in the list, see the original paper [116].

Clearly, it may not be possible to change all of the items in this list. It is generally

beyond the scope of a software system design to transcend paradigms (item 1) or

change the initial paradigm (item 2) in which the design task was conceived. Fur-

thermore, the software system designer may or may not be able to influence or refine

the requirements of the system. But many of the remaining elements of list comprise

aspects of the system design largely under the designer’s direct control.

Of special interest is the concept of self-organization. It is the ability of the

system to change itself by changing anything lower on the list. It endows the system

with resilience, which is particularly important in the domain of quickly-evolving

cyber threats. “Self-organization,” says Meadows, “is basically the combination of

evolutionary raw material–a highly variable stock of information from which to select

possible patterns–and a means for experimentation, for selecting and testing new

patterns” [116]. In other words, the system has the capacity to adapt in pursuit of

better performance (or survival in the face of deteriorating conditions). For other

definitions of self-organization, see [41, 71, 128] and Section 2.8.
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Sections 2.6 and 2.7 present two ideas that can be incorporated into a MAS in

order to achieve this coveted prize of self-organization. Section 2.6 explores the use of

reputation to guide agent collaboration and migration. Section 2.7 details the use of

evolutionary computation, which more explicitly models biological adaptation in the

wild via notions of population selection based on fitness, offspring production with

genetic crossover and mutation, and so forth. Section 2.8 distinguishes between self-

organization and emergence, and discusses both concepts more fully in the context of

multi agent systems.

2.6 Reputation

The pursuit of an adaptable multi agent system achieving Meadows’ notion of self

organization leads to the need for a way to effectively govern the agents’ communi-

cation and mobility patterns.

As introduced in Section 1.4.2, we consider the use of reputation to achieve this

purpose. Reputation is defined simply as the collective observation, by a society, of

a particular agent’s past behavior. A reputation system provides publicly-available

assessments of agents’ trustworthiness based on ratings from past transactions [136].

Trust, on the other hand, is a subjective (internal) measure by which a particu-

lar agent makes use of reputation and/or records of direct experience to govern its

interactions with other agents [80].

A variety of trust models exist. Huynh et al. [80] review three distinct modeling

approaches:

• Mechanisms deriving trust via certificates, rules, and policies

• Centralized trust mechanisms in which witness observations are collected by a

central authority; also known as centralized reputation mechanisms
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Figure 4. Generic trust model: conceptual relationships

• Decentralized systems

In each model, the agent evaluating the trustworthiness of another is called an

evaluator, while the evaluated agent is called the target. The evaluator may query

witnesses with direct experience with the target. The witnesses respond to the eval-

uator’s queries with ratings. The collective ratings impact the target’s reputation,

which the evaluator uses along with internal criteria to determine the target’s trust-

worthiness. Figure 4 demonstrates a generic view of the relationships between the

evaluator, target, and witnesses.

Our research relies on a centralized reputation system with the goal of indicating

the level of service one agent expects to get from another. The basis of this approach

is the same as that of online reputation mechanisms such as eBay [132] and Amazon.

Following an interaction, a witness conceptually rates the target according to the

perceived level of service received. The rating is stored centrally and combined with

other ratings to allow the centralized evaluator to determine the resulting reputation.

This reputation can then be used as a criterion by which other agents decide whether

to engage the reputation holder, or how to treat any information provided by the

reputation holder.

Some explanations are in order: why centralize this component when the reason
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for using the multi agent system design paradigm is to leverage the advantages of a

distributed approach? What is meant by saying the witness conceptually rates the

target?

Recall that one of the reasons for using a distributed system of mobile agents

for intrusion detection is to maximize packet inspection and minimize bandwidth in-

volved. While the volume of traffic flowing into and out of the network as a whole

is too large for more than a sparse sampling by the network-based IDS, each node

receives, on average, a much smaller volume of traffic amenable to full inspection by

a resident ID agent. The distillation of this traffic, as performed by each agent, into

feature value sets to be shared with peers represents the first stage of bandwidth min-

imization. The sharing of only classification results with the central agent controller

represents the second. The user receiving the majority result from a single entity (the

agent controller) at a single node represents a third stage of bandwidth minimization.

The reputation system is centralized in the agent controller to eliminate the need

for additional messages that would otherwise be exchanged between agents. Observe

that the witness conceptually rates the target in this reputation scheme: in fact, it

is the agent controller that determines the witness’ rating by proxy. The agent con-

troller has all of the information necessary for the job. With each agent’s combined

and local classification results, the agent controller can both calculate the majority

classification as well as calculate the ratings for each agent that shared information

with peers. The agent controller can then apply these ratings to each agent’s repu-

tation, which reputation is then available, at a single location, to all other agents in

the system.

In short, the centralized reputation system simplifies the MAS design and is in

line with the goal of reducing the bandwidth incurred by the MAS.

Another example of a multi agent system employing reputation is SPORAS [155],
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which updates reputations with each receipt of a rating according to the following

principles [80]:

1. New users start with a minimum reputation value, building up reputation during

their activity on the system

2. The reputation value of a user never falls below the reputation of a new user

3. After each transaction, the reputation values of the involved users are updated

according to the feedback provided by other parties, which reflect their trust-

worthiness in the latest transaction

4. Users with very high reputation experience much smaller rating changes with

each update

5. Ratings must be discounted according to age so that the most recent ratings

have more weight in the evaluation of a user’s reputation

The first two rules discourage users from simply creating new accounts to escape

the consequences of a series of bad interactions. But one can imagine environments in

which migration should be encouraged, such as when the service an agent can provide

is dependent on the agent’s location. In such cases, a migration threshold may be set

below the restart value. In this way, reputation may be used to govern the mobility

patterns in the multi agent system. This is one of the desired behaviors of our system.

2.7 Evolutionary Computation

There are many ways to introduce additional flexibility into the multi agent IDS.

The values agents use to rate each other in the reputation system can be changed.

The parameters of the agent’s classifier can be changed as well as the classification

technique itself. But as the system’s degrees of freedom increase, finding an optimal
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set of parameters quickly becomes intractible. Evolutionary computation addresses

this search challenge and provides a stochastic approach to achieving notions of self

organization discussed in Section 2.5.

2.7.1 Evolutionary Algorithms: Concepts and Formalism.

The generalized notion of an Evolutionary Algorithm (EA) is applicable to several

representatives; chiefly, Genetic Algorithms (GAs), Evolution Strategies (ESs), and

Evolutionary Programming (EP) [8, 39, 140]. EAs draw inspiration from organic

evolution as a means of searching for competitive solutions in situations where efficient

search for the optimal solution is elusive (e.g. NP-hard problems, such as feature

subset selection - see Section 2.2.1). They are one of a wide variety of algorithms

inspired by biological processes, which include ant colony optimization ([3]), artificial

immune systems ([38]), and many others.

Genetic algorithms became popular through the work of Holland since the 1970s

[77] and emphasize recombination (producing new candidate solution vectors from

pieces of existing solution vectors) as a search strategy. Evolution strategies, on

the other hand, emphasize mutation (modifying one or more elements of an existing

solution vector) and rarely employ recombination [140]. For a survey of evolution

strategies and how they differ from genetic algorithms, see [9].

In evolutionary computation, the process involves initializing a population of can-

didate solutions, where each solution is a vector of parameters proposed for the system

whose performance is being optimized. Each member of the population is evaluated

by supplying the parameters to the system and measuring performance to determine

the member’s fitness. The measure of performance may be a single value (which

could either represent a single objective or a weighted sum of objectives) or a vector

(e.g. in the case of multi-objective optimization). Fitness values are used as selection
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criteria to determine which members of the population should survive into the next

generation. Selected members may then undergo recombination and/or mutation to

produce new candidate solutions. Recombination produces offspring by combining

the parameter values of “parent” solutions in some way. Mutation only involves one

“parent” and simply changes specific parameter values as a means of exploring the

solution space. The resulting population may be a mix of old and new solutions. All

are evaluated as before, after which selection happens again, and so on for potentially

many generations until some criteria is satisfied (e.g. some set number of generations

have completed, some performance criteria has been met, or performance ceases to

improve).

Bäck presents a useful EA formalism [8]. Optimization as a minimization of a

function f : M ⊆ Rn → R, M 6= ∅ consists of searching for ~x∗ ∈ M such that

f(~x∗) > −∞ and

∀~x ∈M : f(~x∗) ≤ f(~x)

This is easily converted when optimization requires a maximization. Regardless,

the goal, usually unrealizeable within time and other resource constraints, is to find

the global optimum ~x∗ for the objective function f within the feasible region M .

The formal definition of a generic, single objective evolutionary algorithm is pro-

vided in Appendix 1.1.

For multiple criteria decision making (MCDM) problems, f is of the more general

form f : M ⊆ Rn → Rk, where again M 6= ∅ but k > 1 [39, 96, 97]. The implication

is that in most cases, there is no single solution ~x∗ ∈ M which produces the global

optimum for every criterion of f . Instead, there exists a set of non-dominated solu-

tions known as the Pareto set, such that the quality of a solution can be improved

with respect to a single criterion only by becoming worse with respect to at least
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one other criterion. An algorithm that employs evolutionary computation to tackle

MCDMs is known as a Multi Objective Evolutionary Algorithm (MOEA).

Two examples of popular MOEAs are the Non-Dominated Sorting Genetic Algorithm-

II (NSGA-II) and the Strength Pareto Evolutionary Algorithm 2 (SPEA2). They

differ in the way members of the population, each representing a solution, are ranked

after fitness evaluation. The challenge is that for a mulitple criteria decision making

problem, there are several dimensions of fitness. How should one combine the fitness

values across all dimensions to produce a rank ordering of the population? NSGAII

and SPEA2 each answer in a different way.

From [39], NSGA-II first groups individuals according to nondomination strata.

Individuals in the same group share the same fitness value, which is proportional

to the population size. Individuals in the “lowest” stratum (when each objective

is a minimization objective) receive the lowest rank, and the highest fitness value.

The selection operator is elitist, taking individuals from the lowest rank possible

until the required number are selected. One additional factor is considered: the

crowding distance. This is the distance, in the objective space, between a candidate

for selection and other individuals already selected. By factoring this in the selection

process, NSGA-II ensures diversity of solutions and explores the fitness landscape.

SPEA2 maintains an archive of “best” individuals seen so far in terms of fitness.

It assigns fitness to each individual on the bases of 1) how many individuals in the

archive and the current population dominate it; and 2) how many other individuals

in these sets it dominates.

Both NSGA-II and SPEA2 are proposed for examination for the purpose of finding

the best way to rate agents in the reputation system described in sections 2.6 and

3.5.5.

Coello et al. [39] provide an overview of the use of evolutionary algorithms for
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Table 1. Characteristics of multi-objective metaheuristics frameworks (from [103])

Framework Problems Statistical Tools Parallel Type Language License

Cont. Comb. Off-line On-line

jMetal yes yes yes no no open java free

MOEA for MATLAB yes no no no yes closed MATLAB comm.

MOMHLib++ yes yes no no no open c++ free

PISA yes yes yes no no closed any free

Shark yes no no no no open c++ free

ParadisEO yes yes yes yes yes open c++ free

multi-objective problems. Their work also examines a recurring theme in multi-

objective evolutionary algorithm research: performance comparison on a variety of

benchmark problems with different characteristics. For examples of various applica-

tions of evolutionary algorithms, see Appendix 1.1.1.

2.7.2 Evolutionary Algorithms: Software.

Popular software frameworks for multi objective metaheuristics research include

[103]:

• jMetal [47]

• MATLAB MOEA toolbox [141]

• PISA [25]

• MOMHLib++ [83]

• Shark [81]

• ParadisEO-MOEO [103]

Characteristics of these frameworks are presented in Table 1, from [103]. Dis-

tinguishing characteristics include: the type of problems they can handle (continu-

ous, combinatorial); availability of statistical tools (including performance metrics);

facilitation of parallel algorithms; framework type (closed or open); programming

language; and the license type (free, commercial).
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With the exception of MATLAB’s MOEA toolbox, all of these frameworks are

freely available. They greatly facilitate experimentation by providing implementa-

tions of many of the MOEA algorithms found in the literature. The open frameworks

allow the user to modify existing implementations or reuse existing components when

designing new algorithms.

Thus, the use of an existing framework clears many implementation hurdles stand-

ing in the way of leveraging evolutionary algorithms in pursuit of a self-adaptive, or

‘self-organized’ system.

2.8 Self Organization and Emergence

The preceding two sections discussed reputation and evolutionary computation as

techniques for achieving a measure of self-organization. It is important to distinguish

self-organization from emergence because both concepts are independently beneficial

but often erroneously conflated. In recent years, as the notion of self organization

has been refined, several authors have argued for differentiating it from emergence

[41, 71, 128].

As De Wolf and Holvoet explain [41], emergence and self-organization each empha-

size very different characteristics of a system’s behavior. They may exist in isolation

or together in a dynamic system.

Emergence is defined loosely as the phenomenon where global behavior arises from

the interactions between local parts of the system. The proposed definition by De

Wolf and Holvoet:

A system exhibits emergence when there are coherent emergents at the
macro-level that dynamically arise from the interactions between the parts
at the micro-level. Such emergents are novel with respect to the individual
parts of the system.
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The ‘emergent’ referred to in this definition denotes the properties, behaviors,

structures, patterns, etc. that result from the process of emergence. The macro-level

is the view of the system as a whole, while the micro-level considers the components

of the system.

The required “novelty” of the emergents declares that the emergents have no

explicit representation at the micro-level. They are not reducible, in terms of expla-

nation of the phenomena, to the micro-level parts of the system–we cannot reduce

the whole to a sum of its parts (reductionism) [41, 76].

The working definition of self-organization proposed by De Wolf and Holvoet:

Self-organization is a dynamical and adaptive process where systems ac-
quire and maintain structure themselves, without external control.

Systems that exhibit self-organization demonstrate an increase in order with au-

tonomy. They are robust in the sense that they adapt to handle changing conditions.

Finally, they are dynamic, which is to say, far-from equilibrium.

Though these concepts are clearly distinct and can exist independently of each

other, they are often combined, particularly in the case of multi agent systems. For

example, a self-organization mechanism may autonomously put the agents in the

configuration that produces a desired emergent. This is precisely the situation for

the multi agent system presented in subsequent chapters: via reputation, the agents

exhibit self-organization in the activity of distributing themselves across the network.

The resulting distribution is the emergent.

2.9 Evaluation of Classification and Heuristic Systems

The concepts discussed in this chapter contribute to the development of a system

that is primarily a classifier. It includes a heuristic in form of a reputation system as
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it indirectly searches for spatial agent distributions resulting in optimal classification

performance. Attention in this section turns to the evaluation techniques appropriate

for such a system.

Computational experiments with algorithms, note Barr et al. [16], are usually

undertaken 1) to compare the performance of different algorithms for the same class

of problems; or 2) to characterize or describe an algorithm’s performance in isolation.

Comparisons with state of the art algorithms are recommended for demonstrating

whether and where new algorithms chart new territory in terms of performance.

In many cases, however, other methods do not exist. Nevertheless, in such cases

the researcher can demonstrate a heuristic’s effectiveness as compared with a more

primitive or more general method serving as a baseline [16].

In experiments that characterize rather than compare a given algorithm, inidivid-

ual factors can be analyzed for impact on the algorithm’s performance. Experimen-

tation techniques applied to such factor analysis include factorial design and analysis

of variance [16].

A complete factorial experiment includes all possible factor-level combinations in

the experimental design [111]. The order in which each factor-level combination is

tested (or the testing units to which the combination is assigned) is typically random-

ized. As Mason et al. explain, randomization affords protection from bias by tending

to average the bias effects over all levels of the factors in the experiment [111].

Of interest is determining whether two different factor-level combinations pro-

duce statistically significant differences in the populations of values obtained for the

response variables. One can set up a hypothesis test checking for equality in selected

test statistics (such as the mean or the median) and obtain a probability of the truth

of the hypothesis given observed values in each population.

Statistical tests for accomplishing this task include the T test and the Wilcoxon
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rank-rum test [121]. The T test is the most powerful under the assumptions of

normally distributed random variables with equal but unknown population variances.

These restrictive assumptions are not always reasonably acceptable. In such cases,

the nonparametric Wilcoxon rank-sum test is a popular alternative [121].

For pair-wise comparisons of various factor-levels, these tests are simple to im-

plement and sufficient for analysis of a proof-of-concept system. A more general

factorial design approach examines the strength of individual and joint factor effects

in all factors involved [123, 121, 111].

In Section 5.2.1, the Wilcoxon rank-sum test is used to establish the probabilities of

population median equality between various factor-level combinations (for example,

three agents using reputation with decay vs. three agents not using reputation).

Future research should explore joint factor effects as the designed flow-based multi

agent IDS progresses beyond the proof-of-concept phase toward real-world operational

capability.

2.10 Summary

This chapter considers, in Section 2.1, the AS-level Internet topology and traffic

modeling requirements in order to conduct the desired relevant research. This is

followed in Section 2.2 by a discussion of the prototypical Pattern Recognition system

as a template for what our system must implement and accomplish. In particular,

our research implements a classification system. Evaluation of classification systems

is consequently discussed in Section 2.9. Section 2.3 examines pattern recognition

in the context of identifying malicious network activity, which is known as intrusion

detection; particular consideration is given to flow-based techniques. In Section 2.4,

a brief discussion of multi agent systems and their applicability to intrusion detection

is presented. Section 2.5 presents a list of system intervention points providing design
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options when building a multi agent IDS. To achieve a degree of ‘self-organization’ as

defined in this list, Section 2.6 considers the notion of reputation. A far broader way

to achieve self-organization via the use of Evolutionary Computation is presented in

Section 2.7. Also, the evolving definition of self-organization and its relationship to

and distinction from emergence is addressed in Section 2.8.

The next two chapters employ these concepts in the presentation of multi agent

system designs for detecting and classifying network attacks.
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III. MFIRE: Network Simulation and Multi Agent System

Design

A new system design is required for autonomous classification of network attacks

in a live, albeit simulated, network. We observe that the difficulties of ID system

design is an ongoing process of enlightenment due to the approximation of the net-

work environment and the reaction to it. Thus, the multi agent system paradigm,

with several performance-enhancing details, is leveraged in this second design iter-

ation in order to maximize the performance. Differences between this and the first

design iteration are presented in Chapter IV. The agents are designed to be mobile

and cooperative in terms of sharing feature observations. Over a series of simulated

attacks, the integrated system searches for a ‘good’ distribution of agents via a ‘rep-

utation’ system. The parameters of this reputation system are improved a priori via

a multi-objective evolutionary algorithm.

In this chapter, the high-level methodology and detailed software design of our

second iteration network simulation and the MAS-based network activity classifier

(MFIRE) are presented. Section 3.1 provides the overall design to allow details in

proceeding sections to be placed in context. Section 3.2 discusses the formal classi-

fication of our solution and the corresponding parameter search space. Section 3.3

justifies the selection of the MASON Discrete Event Simulation (DES) engine as a

framework for the network simulation environment presented in Section 3.4. Section

3.5 elucidates the design of the multi agent system by describing its components and

facilities for self-organization. Additional details are provided in Appendix B.
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3.1 Network Simulation and Multi Agent System Design Overview

The design of a network simulation environment suitable for our purposes involves

the representation of essential network components and operations. Specifically, nodes

must route traffic, generated by processes, over links with limited capacity, in a topol-

ogy reflective of what is seen in the real Internet (see Section 2.1.2). Some of the pro-

cesses represented are ‘normal,’ generating traffic according to distributions seen on

the real Internet (see Section 2.1.3), while other processes represented are ‘malicious,’

causing congestion on network links, systematically extracting information regarding

potential vulnerabilities of network nodes, and/or spreading copies of themselves to

other nodes without authorization.

To enable the properties described in such a simulated network environment re-

quires a representation of traffic as content-bearing packets, facilities for delivering

these packets to specific destination processes, and facilities for instantiating a net-

work complete with its nodes, links, processes, and properties of each (e.g., respec-

tively routing tables, link capacities, and traffic-generation and response behaviors).

To aid understanding at a high-level of traffic patterns present from moment to mo-

ment during a simulation, visualization facilities should also be considered.

This section presents the package hierarchy providing a framework in which to

place the required representations of these concepts. In addition to the network

simulation environment, a multi agent classification system is designed as a set of

processes, with components including agents and an agent controller. To support the

agents’ classification responsibilities, interfaces are designed for classification tech-

niques and feature definitions, enabling changes in detailed implementations without

requiring changes to the system architecture.

Figure 5 presents a general view of the package hierarchy involved in the simula-

tion.
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Figure 5. MFIRE package diagram.
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A few of the more notable classes and interfaces are shown as members of their

enclosing packages. The controlled, one-way dependencies between the visualization

layer, the domain layer (labeled ‘MFIRE’), and the application layer (‘MASON’)

exhibit a software engineering principle known as Model-View Separation [102]. This

principle states that domain objects should not have direct knowledge of view (UI)

objects. It allows the visualization layer to be changed without requiring any changes

in the domain or application layer.

As shown in Figure 5, the domain layer consists of the following groups of classes:

• Network - includes representations of physical domain entities of interest. This

is the ‘core’ of the simulation.

• Scenarios - concrete realizations of the abstract MFNetwork. The prominent

class is the TopgenNetwork, which includes facilities for loading a network pro-

duced by the Topgen AS-level Internet topology generator. Each class in this

package is characterized by a a unique set of Processes initially running on a

subset of the nodes.

• Processes - These are analagous to the networked applications on the real In-

ternet. Each Process runs on a host node and may receive and/or generate

traffic.

• Payloads - Specially crafted payloads execute code when opened by a certain

receiving processes. These payloads can be written for legitimate purposes, such

as Remote Procedure Calls (RPC), but our focus is on payloads that install

malicious processes on the receiving node.

• Multi agent system - This package includes the “worker bees” - the Agents, the

“queen bee” - the AgentController, as well as AgentManagers with special local

oversight of any Agents on the same host node.
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• Classification - Agents make use of entities in this package to make local clas-

sification decisions. Included are the classification algorithms, enclosed in the

‘classifiers’ package, and the observations and features used. Strictly speaking,

both observations and features are statistics-based calculations, but we distin-

guish the observations as being more “raw” than the features. By ‘feature’ we

imply there is something composite in its nature - it may be an average of ob-

servation values or the result of some other series of mathematical operations

on the observations and/or other features.

At the top of Figure 5 is the MASON discrete event simulation engine package,

which provides many vital facilities for the execution of the simulation as well as the

visualization of the same. The details of the visualization are specified via entities in

the visualization package at the bottom of the diagram.

Figure 6 provides a class diagram for some architectural detail of the more promi-

nent aspects of the domain representation. This is not intended to provide a compre-

hensive listing of the classes nor the attributes and methods of each class. Rather,

expressed are some of the essential class associations and hierarchies that drive the

network simulation.

3.2 Formal Problem Specification

In any implementation of the high-level design, ultimately we seek to 1) maximize

the classification accuracy of all attack classes; and 2) use minimal network band-

width. This requires an effective spatial distribution of a limited number of agents,

where each agent uses a limited number of features to make local classification deter-

minations. These determinations are then shared with a centralized controller. This

section defines the problem formally to provide an unambiguous template for design

implementation.
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MF_Link
-capacity: double

Packet
-payload: String
-TTL: int
-sourcenodeaddr: int
-destnodeaddr: int
-destport: int
-seqnumber: int
+decrementTTL(): boolean

MF_Node
#intern_iface: NodeInterface
#routingtable: HashMap<Integer, NodeInterface>
#activePorts: HashMap<Integer, ArrayList<Packet»
#addr: int
+requestPort(int): boolean
+releasePort(int): boolean

Process
+port: int
#processMessages()
#generateMessages()

ParetoProcess
-alpha: double
-min: double

DoSProcess
+target: int

ScanProcess

WormProcess
+exploits: ArrayList<Integer>

0..n

1

runs on

2

1..*

1..*0..*
carries

1

0..*

processes

1..2 0..*
generates/receives

MASON::Schedule

+step(SimState): boolean

require

Agent
-localfeaturemeasurements: HashMap<Integer, Double>
-sharedfeaturemeasurements: HashMap<Integer, Double>
-observationmeasurements:
     HashMap<Integer, HashMap<Integer, Double> >
-observations: HashMap<Integer, Observation>
-classifier: Classifier
+classify(): int

0..*
1

receives stats from

1

0..*

shares local stats

AgentController
-agentLocations: HashMap<Integer, Integer>
-agentPorts: HashMap<Integer, Integer>
-agentRatings: HashMap<Integer, Double>
-votes: HashMap<Integer, Double>
-repDecayFactor: double
#accuracyReport(): void

1

1..*

controls

InsecureProcess
+vulnerabilities: ArrayList<Integer>

Steppable

+step(SimState)

provide Steppable

provide Steppable

MF_Network

+setup()
+start()
+finish()
+main(String[])

MASON::SimState
+schedule: Schedule
+doLoop(Class, String[])
+start()
+finish()

NodeInterface
-inbounds: ArrayList<Packet>
-outbounds: ArrayList<Packet>
+put(ArrayList<Packet>)
+put(Packet)
+deliverPackets(): int

1..*

1

1..*0..*
carries

provide Steppable

Figure 6. MFIRE class diagram.
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We denote the set of network activity classes as A. An arbitrary set of p features

arising from any given instance of A is denoted as the vector X. A(X) yields the label

of the class that produced X. One does not have A(X) for arbitrary X, but seeks

an accurate model, denoted Â(X). Maximizing the classification accuracy motivates

selection of Â(X) and associated parameters θ. One of these parameters is the feature

subset selection vector SX ∈ Bp, where SXj = 1 if the corresponding component

feature Xj is used, 1 ≤ j ≤ p. Note that searching for the optimal feature subset

among 2p possibilities is known to be NP-Hard [5]. Other parameters involve the

number and distribution of agents in the multi agent classifier.

Intuitively, there is some competition between the multiple objectives of minimiz-

ing bandwidth and maximizing classification accuracy. One or the other is adversely

affected by increasing or decreasing the number of agents as well as the amount of

information exchanged between agents.

If d(a) generically denotes the duration of scenario a, the multi agent system is

composed of z agents, and mi(q, r) denotes the number of bytes sent from agent q to

agent r on iteration i of the scenario, then the bandwidth B(a) is:

B(a) ,
d(a)∑
i=1

z∑
q=1

z∑
r=1

mi(q, r) (13)

If the dominating reason for sending messages between agents is to share feature

measurements, then the size of each message is proportional to the number features

shared. Thus:

m(q, r) ∝
p∑
j=1

SXj (14)

From equations 13 and 14 it is clear that minimizing the bandwidth depends on

minimizing the number of agents z and / or the number of features used, which is
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∑p
j=1 SXj. These parameter values are reflected in θ. Obviously, one should not

reduce them such that the Expected Prediction Error, equation 7 (Section 2.2) is

injuriously impacted:

EPE , E[L(A, Â(X))] (7)

This motivates the search for an effective distribution of a limited number of

agents. Certain locations in the network yield feature measurements which are better

able to distinguish the ongoing activity class; we expect these locations to be highly-

connected nodes.

Simply, there are two major areas of concern: 1) selection of the classifier model;

and 2) the mechanism by which agents agents distribute themselves throughout the

network.

3.2.1 Classifier Model Selection.

The objective is to select Â, the classifier model, such that for inputs X and ‘true’

outputs A(X), equation 7 is minimized.

We use the zero-one loss function (where an equal penalty is applied to all mis-

classifications). This leads to the use of equation 9 (Section 2.2), which guides speci-

fication of Â(X) as selecting the most probable class a ∈ A given the input:

Â(X) = Ak if P (Ak|X = x) = max
a∈A

P (a|X = x) (9)

The challenge lies in the fact that P (a|X = x) is unknown. An estimation of

this probability involves the selection of the classification algorithm, a set of classifier

parameters θ appropriate for the selected algorithm, and a training process.

We select the Support Vector Machine technique [142, 144, 143] as a starting
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point for Â(X) due to its high generalization performance (see Section 2.2 and [34]).

Fully defining Â(X) involves selection of θ, which includes the feature subset selection

vector SX .

3.2.2 Spatial Distribution of Agents.

The search for the most effective spatial distribution of the agents is akin to the

feature selection problem (see Section 2.2.1). For the graph G = (V,E) corresponding

to the network of interest, where V is the set of vertices and E is the set of edges, the

objective is to find the subset of V that optimizes equation 7. The associated vertex

selection is denoted SV ∈ B|V |, subject to the constraint that

|V |∑
j=1

SV j = z, where z,

again, is the number of agents in the multi agent system. Observe that selecting z

vertices from the set V entails a search space of

(
|V |
z

)
=

|V |!
z!(|V | − z)!

(15)

possibilities.

Section 3.5 discloses the mechanism for motivating agents to seek good ‘vantage

points.’ It relies on a ratings and reputation system for the agents. Agents that

consistently share heuristically ‘good’ information accrue high reputation and achieve

stability, while agents that do not suffer a loss of reputation until prompted to migrate

to a neighboring node.

This discussion of formal problem specification is preceded by the high-level net-

work simulation and MAS design. The proceeding sections present intermediate and

low-level design and implementation. Although such details are useful in recognizing

the design intricacies, one can, still without them, appreciate the discussions of the

remaining chapters.

64



3.3 Discrete Event Simulation Engine: MASON

There is a wide variety of discrete event simulation engines available for building

a simulation (see Section 2.1.4.1). Typically, each emphasizes a certain domain or

technique. For example, OMNeT++ [145] is geared toward network simulation, as

is ns2 [112] and cnet [114, 113], while Parsec’s emphasis is parallelism [11]. Finally,

MASON [106] caters to the needs of multi agent systems simulation.

There are three principle reasons for the selection of MASON as the underlying

DES engine:

• This research concerns a multi agent system - MASON’s structural expertise

• MASON does not impose nor even provide a predefined abstraction of real-world

computer networks. Our implemented network simulation is customized to focus

on prototyping a system able to function in a moderately complex network

environment. Several of the discrete event simulation engines mentioned in

this section are heavily invested in accurate simulation of real-world protocols,

network devices, and applications, but the much higher complexity of these

environments introduces networking issues not directly relevant to MFIRE’s

initial implementation.

• We have some prior experience with MASON. This research began as a way

to complement the attack mitigation capabilities of Holloway’s Self Organized

Multi Agent Swarms (SOMAS), [78]. SOMAS operates in a MASON-based

network simulation.

Observe that although MASON is designed to handle large numbers of agents

in complex environments [106], it is not explicitly an agent framework, such as the

frameworks provided by JACK, Cougaar, JADE, and others [105]. These frameworks
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in some cases (e.g. JACK [79] and JADE [20]) provide compliance with the interop-

erability standard called the Foundation for Intelligent Physical Agents (FIPA) [21].

Such agent frameworks should be explored for use by MFIRE in future research.

3.4 Simulated Network Design - MFIRE’s Domain of Operation

With MASON having been selected as the network simulation driver, this section

discusses the design of the simulated autonomous system network, including its com-

ponents and topology. Discussion of network traffic is reserved for Sections 3.4.4 and

3.4.5.

3.4.1 Network Simulation Design Objectives.

Design objectives for the physical aspect of the AS-level Internet simulation in-

clude:

1. Employ a topology representative of the AS level of the Internet

2. Allow for multiple scales of AS networks in terms of maximum link distance

3. Provide visualization facilities to enhance intuitive understanding of simulation

execution

The first objective is present because of the impact of topology on system perfor-

mance, as discussed in Section 2.1.2 and [154].

The second objective introduces flexibility sufficient to accommodate the needs

of different potential MFIRE clients. One client could be a federation of universi-

ties, government agencies, and Internet service providers within a state. Another

client could be the U.S. military. The maximum link lengths involved in connecting

the state-wide federation of autonomous systems are much shorter than the links

connecting the autonomous systems of a global military.
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The third objective is useful for qualitative system and scenario validation. This

validation has a boolean output based on whether desired behaviors are observed. For

example, with each timestep in our simulation, our visualization paints links some

color between green and red (or white and black) depending on the ratio of current

traffic to the link’s capacity. Under a Distributed Denial of Service scenario, one

should expect to see numerous red (black) links along various paths to the target.

3.4.2 Network Simulation Low Level Components.

The physical network components simulated in this research investigation include:

• Nodes - each node represents an Autonomous System (AS). Internal to an AS

is a collection of routers, switches, firewalls, and edge devices, including servers

and clients. These devices are all abstracted into one node in our simulation,

represented by the MF Node class in Figure 6. Nodes route traffic via routing

tables, initialized via the Floyd-Warshall shortest path algorithm [53]. This is

analagous to gateway routers employing BGP (see Section 2.1) on the real Inter-

net, though with BGP, policy decisions often trump routing efficiency (compet-

ing Internet service providers, for example, may refuse to allow ‘through’ traffic

without compensation). Each node is addressable by a unique identification

number. Nodes provide resident processes with basic communications facilities,

such as the send() method, which creates and sends packets. Nodes implement

the Steppable interface and therefore supply a step() method invoked on each

timestep of the simulation. This method primarily switches packets from the

inbound queues of all NodeInterfaces to the outbound queues of NodeInterfaces

identified in the routing table, via lookup on the packet’s destination address.

• NodeInterfaces - These are intermediaries between Nodes and 1) Links; or 2)

Node’s resident Processes. The first case includes all external-facing interfaces,
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while the second describes the Node’s internal interface. Each is an entry/exit

point. All NodeInterfaces have an inbound queue and an outbound queue. The

inbound queue is read by the attached Node and written to by the attached

link. The outbound queue is read by the attached link and written to by the

attached Node.

• Ports - associated with nodes, ports are the communication end points for pro-

cesses running on servers and clients. In the real world, each computer typically

has many thousands of ports associated with each transport-layer protocol. For

example, there are 216 ports available for Transmission Control Protocol (TCP)

and another 216 for User Datagram Protocol (UDP), the number being fixed

by the width of the port field in the segment, respectively datagram header

[126, 127]. In our simulation, each port on an AS node corresponds with a port

on an arbitrary host internal to the AS.

• Port Directory - Certain “well-known” ports are reserved for special purposes.

This is the case with the real Internet, for which a list is maintained by the

Internet Assigned Numbers Authority (IANA) [2] specifies how certain ports

are to be used, such as port 80 for Hyper Text Transfer Protocol (HTTP)

traffic. When these standards are adhered to, finding public services is greatly

simplified. Also, filtering of certain expected types of traffic becomes simple.

Observe that, in our simulation, some ports are reserved for components of the

multi agent system.

• Links - links in our network simulation are strictly point-to-point and connect

autonomous systems together. Links are full duplex but have finite bandwidth.

Depending on the scale of the simulation, links may vary in length, affecting

propogation delay. One of three scales is specified at the start of each simulation:
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– LOCAL - All links have the same unit length. Packets traverse these links

in one step of simulation time.

– REGIONAL - Link lengths vary from one to ten units. This is useful when

the simulated AS topology spans a continent.

– GLOBAL - Link lengths vary from one to 100 units. This is appropriate

for simulation of an AS topology in which some of the nodes are satellites

in geostationary orbits, for which propogation delays can indeed be on the

order of 100 times those of terrestrial links.

Scale is realized with each link being composed of sublinks. Links implement

the Steppable interface. Each timestep, when the Link’s step() method is

called by the Schedule, the Link causes each Sublink to pass its traffic to its

adjacent Sublink (or, ultimately, NodeInterface).

• Processes - these include processes that strictly generate traffic for the benefit of

the simulation as well as classifying agents that generate actual communication

traffic (primarily to share observations). All processes run on nodes and must be

assigned a port before they can send and receive packets. Processes implement

the Steppable interface. When step() is called, the Process first receives and

processes traffic, and then generates outbound traffic.

• Packets - Each packet consists of the following:

– Source node address - identifies the Node of origin

– Source port - the port used by the sending Process

– Destination node address - identifies the Node hosting the intended recip-

ient Process

– Destination port - communication endpoint for the intended recipient Process

69



– Sequence number - Facilitates sending messages spanning multiple packets

– TTL - Time To Live - the number of hops allowed before some intermediate

Node discards the packet. This mitigates problems arising from routing

loops induced by congestion or misconfiguration of the routing tables.

– Payload - a string containing the message the sending Process wishes to

pass to the intended recipient. The format of this message is entirely up

to the communicating processes.

– size - Indicates the size of the payload, in numbers of characters, if a

real payload is used. If a real payload is not required (e.g. to simulate

background traffic or junk traffic sent by denial-of-service processes), the

sending Process can simply specify the desired size of the packet to be sent,

leaving the payload string null and preserving memory.

With the previous component discussion completed, the flow of our simulation

can be explained. During initialization, after all network components have been

instantiated, all Processes, Nodes, and Links are scheduled to execute associated

tasks on every timestep (e.g. generate traffic, process traffic, move traffic). They are

prioritized as follows:

• First, Processes handle received traffic and generate new traffic

• Second, Nodes handle traffic by switching packets from inbound queues to ap-

propriate outbound queues or ports

• Third, Links move traffic along component Sublinks toward the NodeInterfaces

on either end

The corresponding real-world components, of course, behave asynchronously. The

synchronous aspect of the simulation is a design simplification. As stated in [69],
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s:Process sn:Node

p:Packet

l:Link rn:Node r:Process

send(String msg, rn, int rport)
create(msg, rn, rport)

int SUCCESS

switchPackets()

receive()

String[] rmsgs{msg}

put(p)

switchPackets()

:Schedule

1.1 step()

1.2 step()

1.3 step()
movePackets()

2.2 step()

3.1 step()

Figure 7. MFIRE sequence diagram illustrating the transmission of a packet

synchronous model composition helps provide structure without introducing non-

determinism. A deterministic model relying on pseudorandom number generators

allows reproducible tests. All that is required to reproduce a specific test is to preserve

the seed with which the pseudorandom number generator is initialized.

It may nevertheless be disconcerting to apply a synchronous model to intrinsically

asynchronous situations. It is well-known since Milner’s papers on the subject [120,

119], however, that a synchronous formalism can be used to express asynchrony.

Explicit non-determinism and sporadic process activation help bridge the gap between

the synchronous model and the asynchronous reality [69]. For examples, see [17,

18]. Attention to more accurate modeling of underlying asynchronous communication

processes is reserved for future research.

In Figure 7 the sequence of events involved in packet transmission between Pro-

cesses on adjacent Nodes is depicted. For clarity, some classes such as the NodeIn-

terfaces and the Sublinks have been left out. Some of the method parameters are

likewise omitted for ease of understanding the process. In this Figure, steps are la-
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beled by timestep and by the priority of the Steppable involved. The sequence of

events is as follows:

1. The Schedule invokes the sending Process.

2. This Process generates a message and calls the send() facility provided by the

host Node.

3. The Node assembles a Packet with the message as the Packet’s payload. The

Node then places the Packet in the inbound queue of its own internal NodeIn-

terface. Doing this normalizes the way packets are handled, whether generated

internally or received from another Node.

4. The Schedule invokes the Node.

5. The Node switches the Packets from the inbound queues of all NodeInterfaces

(including the internal NodeInterface) to the outbound queues of the appropri-

ate NodeInterfaces via the routing table.

6. The Schedule invokes the Link attached to the NodeInterface that is now hold-

ing the Packet in its outbound queue.

7. The Link takes the set of Packets from the originating NodeInterface’s outbound

queue and moves it to the next Sublink. In the case that the scale is LOCAL,

there is only one Sublink for each side of the full duplex Link.

8. Not shown in Figure 7, the Packet waits with all other Packets on the Sublink

until the next time the Link is invoked by the Schedule. At this time, assuming

the scale is LOCAL, the Packets are placed in the inbound queue of the desti-

nation NodeInterface. If the scale is not LOCAL and the length of the Link is

greater than one unit, Packets are moved to the next Sublink in the series of

Sublinks composing the Link.
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9. The Schedule invokes the destination Node.

10. This Node switches the Packets as did the originating Node. This time, however,

there are Packets that have “arrived.” Each Packet whose destination address

matches this Node’s address is placed in a buffer indexed via the port number.

11. The Schedule invokes the intended recipient Process.

12. The Process uses the host Node’s receive() method to access the Packets in

its port. This completes the delivery of the Packet for this example.

3.4.3 Network Simulation Topology.

The question remains how to properly set up a representative collection of nodes

and links. Our architecture is extensible in that it permits different ways of initial-

izing the simulation’s network topology, including completely manually. Because the

manual approach is unwieldy for all but the smallest networks, automated topology

generation is necessary.

From the discussion in Section 2.1.2, we desire a generator that, at a minimum,

produces topologies according to “Pareto-type principles,” in which a small number

of nodes have many neighbors, while most nodes have a small number of neighbors.

While most tools adhere to this, we select TopGen for having incorporated some of the

most up-to-date observations about the real Internet AS topology. In particular, the

Controlled Distance model is used (see Section 2.1.2 and [138]) to generate 100-Node

networks.

Among the tools listed in Section 2.1.2, RealNet is another promising candidate

with a different approach. It queries various data sources such as publicly available

BGP tables and traceroute records, producing a model using certain current charac-

teristics. Though unavailable for evaluation for our current research, future research
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(a) TopGen (b) MFIRE

Figure 8. Network produced by TopGen and reproduced in MFIRE

should evaluate RealNet’s applicability as a topology generator for our network sim-

ulation.

Figure 8 shows the topology generated and rendered by TopGen as well as the re-

sulting visualization after loading it into MFIRE. Using the Node coordinates supplied

in the TopGen file, MFIRE sets link lengths by calculating the Euclidean distance

and scaling to the specified range as described in Section 3.4.2.

3.4.4 Network Simulation Traffic Routing.

Once the topology is in place, the Floyd Warshall routing algorithm [53] initial-

izes each Node’s routing table. The result is that when there is no contention for

bandwidth, packets always take the shortest path to the destination.

When the preferred link is saturated with traffic, an alternative link is selected at

random. If the alternative link is also saturated, the packet is discarded. If nodes were

to rerun the routing algorithm when such congestion arises, packet delivery could be

made more reliable. This is also a possibility for future research; but, at present, the

74



random alternative link selection method does allow many more packets to continue

to their destination than if there were no route flexibility at all.

3.4.5 Network Simulation Traffic Design.

In this section, the four main traffic patterns are characterized that dominate

the simulation. Observe that agents also generate traffic patterns of their own when

communicating, but this is normally insignificant in comparison with the patterns

described in the next four sections.

3.4.5.1 Simulated Normal Traffic.

Normal traffic follows a Pareto distribution (see Section 2.1.3,[152]). Equation 6

generates a Pareto distributed sequence of values:

T =
b

U
1
α

where b is the minimum value. This equation is used by the ParetoProcess class to

determine the size of the packet to send to every possible destination on the network.

To produce the desired minimum quantity of 0 and the heavy tail observed in real-

world Internet traffic [152], we use

T =
1

U
1
α

− 1

with α = 2.0.

When the result is zero, no packet is sent. Otherwise, the result is used to specify

the size of a packet with no actual payload. This packet is sent to the destination

Node and to a port uniformly randomly drawn from a range of “well-known” port

numbers (see Section 3.4.2).
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In typical simulations, every Node on the network has a resident ParetoProcess.

As a self-similar distribution, one of the properties of the Pareto distribution is that

the aggregation of values each drawn from this distribution is also Pareto distributed

[152]. This is to say that at any given Node on the network, the cumulative volume

of traffic, over all inbound links, exhibits scale-invariant “burstiness.”

The following sections describe malicious traffic patterns that, in isolation, do not

demonstrate the same qualities as Pareto-distributed traffic. The hope, elaborated

in Section 3.5.4, is that the presence of malicious traffic amidst “legitimate” traffic

makes itself known by altering the characteristics of the aggregate inbound traffic.

When this is the case, there is cause for optimism that a classification algorithm may

be able to detect the disturbance.

3.4.5.2 Simulated DDoS Traffic Scenarios.

Flooding-based Distributed Denial of Service (DDoS) attacks rely on overwhelm-

ing the target with a flood of traffic [33], as opposed to a semantic-based Denial of

Service attack which exploits a system vulnerability [122]. Multiple attack sources

send a steady barrage of small packets to a single target node. Even if the target never

crashes, it may still be effectively rendered impotent if all communication channels

are clogged, shutting out legitimate traffic.

In our current network simulation environment, a DDoS scenario is instantiated

with a list of source nodes and a target. On each source, a DoSProcess is installed.

On each timestep of the simulation, each DoSProcess attempts to at least saturate

the path between its host and the target. The DoSProcess does this by sending 1000

packets, each one of size one-thousandth the capacity of the attached link. This

strategy is more effective than attempting to send large packets, which have a higher

probability of not being placed on the link at all (when the link is already carrying a
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moderately-heavy or worse load).

3.4.5.3 Simulated Scan Traffic.

The objective of scanning is to provide a potential attacker information about a

target network and / or specific hosts on the network. Scans may be described as

horizontal, in which single ports are tested on a wide variety of hosts, or vertical, in

which many ports are tested on a single host, or block, which is a combination of

horizontal and vertical [139].

The ScanProcess in MFIRE simulates a UDP scan [146]. The choice of protocol

involved in the scan has certain implications. Unlike TCP, UDP is a connectionless

transport layer protocol. There is no “handshake” involved with setting up a connec-

tion (e.g. the SYN, SYN/ACK, and ACK packets involved in setting up a generic

TCP connection). Packets sent to a process listening on a UDP port are simply han-

dled - or not! When a process relies on UDP for communication, if it desires any

of the service guarantees attempted by TCP, it must implement them itself in the

application layer (the payload of the UDP datagram encapsulated in an IP packet).

Consequently, a UDP scan results in some ambiguity when the scan packet is sent

to a given port at a particular address and no response comes back. Ordinarily, if

the port is closed, the host may send back an ICMP “port unreachable” message.

The UDP scanner can confidently mark that port as “closed.” If the scanning packet

conforms to something expected by a legitimate UDP application (say, a DNS query

for port 53), and a response is received, the port is marked “open.” When no response

is received after a certain time, it may be that the response was blocked by a firewall,

or that the host is configured not to send back ICMP port unreachable messages. The

listening Process may have stalled for some reason. Whatever the reason, the UDP

scanner often simply marks the port as “open / filtered.” It may later try different
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Figure 9. MFIRE: Example block scan conducted by the ScanProcess class

application probe packets hoping to find other listening services [107].

This is essentially how our ScanProcess operates. It is initialized with a range of

addresses and ports (supporting vertical, horizontal, or block scans). A ‘rate’ parame-

ter controls how many packets it sends each timestep. To each < destination, port >-

tuple, it sends a packet with “CONNECT” in the payload. The destination Node is

configured to respond with ”UNREACHABLE” when no Process is listening on the

port. If a Process is listening, in most cases the MF Process subclass ignores these

packets and sends no response. The one exception is the InsecureProcess. When it

receives “CONNECT”, it replies with “OK.”

Figure 9 depicts a block scan involving two nodes and a range of 21 ports. From
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the description of how the Process and nodes in the simulation respond to the probe

packets, it is clear that an InsecureProcess is listening on port 49 on the Node with

the address of 18, while the Node at address 19 is hosting an unknown Process on

port 41 and an InsecureProcess on port 54. The scan is conducted from the Node at

address 1.

3.4.5.4 Simulated Worm Traffic.

A computer worm is a piece of malware that can replicate itself over a network with

no user intervention. For many worms, replication is the only goal. The worm attacks

vulnerable systems and installs complete copies of itself on compromised systems.

Worms may be characterized by aggressiveness and spreading methodology [150].

Important worms include Code Red, Slammer, Blaster, Sasser, Nimda, and My-

doom. The earliest major Internet worm was Morris, which took down major sections

of the Internet in 1988 by compromising vulnerabilities in the Berkeley Standard Dis-

tribution (BSD) UNIX and derivative operating systems [54, 48]

The worm implemented in MFIRE is simple and serves as a first test case (more

complicated worms are possible and should be investigated in future research). The

worm is initialized with:

• A range of target Node addresses

• A list of integers corresponding to simulated vulnerabilties. These are analagous

to identifiers in the Common Vulnerabilities and Exposures (CVE) database

[110]. Many worms rely on a single vulnerability to which many hosts are

thought to be exposed, but more sophisticated worms use several. Stuxnet, for

example, uses four [51].

• A list of target ports. Most real-world worms target popular services listening
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on specific ports.

• A rate parameter controlling how many attack packets to send each timestep

• A delay parameter controlling how long the simulation runs before the worm

starts attacking and spreading

In a typical worm attack scenario, the attack surface is initialized by first setting

up several active vulnerabilities in the environment. Next, InsecureProcesses are set

up at every Node. Each InsecureProcess is initialized with a random subset of the

active vulnerabilities. The InsecureProcesses are furthermore usually set to listen on

a small number of ports. Sometimes only a single port is used. This is often the case

in reality, where vulnerabilities are typically associated with specific applications, and

these applications often run on a single well-known port.

When the worm becomes active, on each timestep it sends as many attack packets

as its rate allows. Each packet is sent to a randomly selected address and port within

the initialization parameters. The packet is crafted to simulate exploitation of a

randomly selected vulnerability from its arsenal.

The designed format of the packet’s payload is:

EXPLOIT:[active vulnerability #]:[malicious code]

where the malicious code section simulates the effect of sending a malicious binary.

As to how the effect is achieved, the malicious code section includes a Java class

name, the definition of which is presumed to be accessible by the simulation. It

is a subclass of the abstract Payload class, which specifies one method that must

be implemented: execute(). This method is called by the InsecureProcess if it is

successfully exploited. The user can define new Payloads with practically boundless
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possibilities. For the WormProcess, the Payload is a WormInstaller. It has the sole

purpose of installing a WormProcess on the host Node.

When an InsecureProcess receives an attack packet, it first determines whether the

active vulnerability is one to which it is exposed. If so, the exploit is successful with

a certain probability. The probability is pulled from a map indexed by vulnerability

number. Typically, this value is 20%. In any case, it simulates the uncertainty in a

real-world attack surface caused by patching, firewall signature updates, and other

configuration changes.

3.4.5.5 Simulated Malicious Traffic Extensions.

The three types of malicious activity described so far (DDoS, scans, worms) may

be combined for yet greater impact. For example, a worm may spread much more

effectively and stealthily if a scan is conducted first. Similarly, a successful DDoS

attack may require less packets if the attacker switches tactics from trying to flood

inbound links to trying to flood listening processes instead. Finally, worms may

switch from spreading more copies of itself to launching DDoS attacks (or the spread

of the worm itself may qualify as a DDoS attack. Such combinations are generally

employed by botnets [161]. Neither botnets nor any lesser combination is employed

in the present research, but such are natural extensions requiring no changes to our

network simulation architecture and should be explored in future research.

3.4.6 Interfacing with MASON.

A few details clarify how MASON interfaces with and drives our implemented

network simulation.

The components of MASON of primary interest include the SimState class, the

Schedule class, and the Steppable interface. The relationship of these components
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to MFIRE is depicted in Figure 6:

• The MF Network class is a subclass of SimState, and is itself an abstract class.

Calling doLoop() on any concrete realization of MF Network invokes MASON’s

simulation execution Process.

• A Steppable is an event, or an object that needs to take action at a specified

time.

• The Schedule class holds Steppables and executes them at the scheduled

timestep via each Steppable’s step() method. Steppables that fire on the

same timestep may be further grouped into a hierarchy of priorities. Steppables

with the same priority execute in random order.

3.5 MFIRE (Multi Agent System) Design

Having completed the design of the simulation framework, the simulated net-

work’s topology generation, components, and dominant traffic-generating processes,

what remains is the multi agent system charged with distinguishing benign traffic pat-

terns from malicious. In the following sections, we present the MFIRE architecture -

control, communication, and mobility.

The collective activity of the population of agents is tied together at the multi

agent system (MAS) level through a controller, which processes the classification

decisions (‘votes’) of individual agents and reports the majority result. Prior to

classification, agents may receive sharing assignments from the controller, and share

feature values accordingly. Each agent is then able to make a classification based on

local as well as shared feature values.

The controller stores agent reputations. Each round, it calculates a rating for each

sharing assignment an agent was given. The rating depends on a heuristic measure of
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Algorithm 1 Reputation Calculation

denote classification by agent aj at time t using only local feature values as ljt
denote classification by agent aj at time t using combined local and shared feature
values (e.g. from peer agent ai) as cjt
denote the majority classification at time t as mt

Require: 0 < decay ≤ 1
procedure CalculateReputations(decay)

for all agents ai do
for all recipients aj of information provided by ai do

if cjt = mt then
if ljt = mt then

ratingij ← neutral
else

ratingij ← positive
end if

else
if ljt = mt then

ratingij ← bignegative
else

ratingij ← smallnegative
end if

end if
reputationi ← reputationi + ratingij

end for
reputationi ← reputationi × decay

end for
end procedure
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how much the shared feature values helped or hurt the recipient’s ability to classify in

step with the majority. After all ratings are processed, the controller may then decay

each agent’s reputation by 10%. The idea is to motivate agents to explore other nodes

when they are not perceived as making any positive contributions to the community.

We experiment with and without this decay.

Algorithm 1 details the idea. The values for variables neutral, positive, bignegative,

and smallnegative are reflected in Table 2 and discussed in Section 3.5.5.

The use of a centralized controller makes the multi agent system more vulnerable

to disruption, but simplifies the design considerably. The disadvantages of a central-

ized controller may be remedied by allowing agents to elect a new controller when

the current controller becomes unresponsive. This is not currently implemented and

is also an area for further research.

3.5.1 MFIRE Design Operational Objectives.

From sections 1.4 and 1.3, design objectives for our multi agent system include:

• Minimize classification error

• Minimize bandwidth

• Provide a robust communications protocol to cope with disruptive traffic pat-

terns

See Section 3.2 for formalizations of the first two objectives. These competing

objectives are achieved by finding a ‘good’ distribution of a small population of agents.

The agents are mobile, and their locational stability is governed by a centralized

reputation system managed by the agent controller.

The third objective is elaborated following an overview of the MAS flow of exe-

cution.
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3.5.2 MFIRE Execution Flow Design.

Figure 10 presents a high-level view of the nominal flow of execution from the

perspective of the MAS. Five states are shown. Figure 10a indicates that the tran-

sition from each state is governed by the clock. This implies synchronization among

participating elements, which is discussed in detail in Section 3.5.3. Typical message

exchange for each state is shown in Figure 10b.

The explanation of MFIRE’s high-level states is made simpler by assuming agents

have been collecting observations from their respective host nodes for nearly a full

cycle when it comes time to check in with the AgentController. Furthermore, each

agent is assumed to have a reputation stored with the AgentController.

• Check-in: Agents notify the AgentController of their intention to participate in

the next round of observation exchange and classification. The AgentController

notes the source address and port of each CHECKIN message.

• Transition: The AgentController makes an observation sharing assignment for

each Agent that checked in. It does this by constructing a roulette wheel from

the reputations of other checked-in Agents. This roulette wheel is used to make

a sharing assignment stochastically with preference given to Agents with higher

reputations. The AgentController notifies the selected Agent with an ASSIGN

message.

• Assignments: Selected Agents receive assignments. Some Agents may receive

multiple sharing assignments, while others receive none. For each assignment

received, the Agent stores the address and port for the designated recipient as

contained in the ASSIGN message.

• Transition: End the current observation cycle, calculate features, and start

a new observation cycle. Observations are traffic statistics collected on each
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MFIRE MAS

check-in

observation exchange

END observation period

controller notifies all selected subscription providers

agents calculate features and send to subscribers

agents classify activity and send to controller

controller waits for
RESULTS from all agents

all agents wait to
receive MOVE/STAY

controller makes global classification,
updates agent ratings, and sends each

agent MOVE or STAY

[simulation not over]

[simulation over]

END Awaiting RESULTs

END EXCHANGE

END Awaiting CHECKINs

providers receive
assignments

END Awaiting MOVE/STAY
agents migrate or stay

(a) Activity Diagram

Controller Agent 2Agent 1

check‐in

assignments

exchange

results

move/stay

check‐in

…

(b) Communications Example

Figure 10. MFIRE activity and client-server diagrams showing the system’s normal
flow of execution
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timestep. At the end of each observation cycle, there exists an Observation set

for each traffic statistic measured. Features typically summarize one or more

of these Observation sets. Agents calculate Feature values and store them for

later use. Any Agents with sharing assignments also send their set of Feature

values to all assigned recipients using SHARE messages.

• Observation Exchange: Agents wait to receive SHARE messages. Each Agent

expects to receive one.

• Transition: Agents use two classifiers to make two classifications for the net-

work activity observed over the previous cycle. One of these uses only locally

calculated feature values, while the other uses the combined set of local and

received feature values1. Agents send the results to the AgentController in a

RESULTS message.

• Results: The AgentController receives RESULTS messages from all checked-in

Agents.

• Transition:

– The AgentController tallies the votes. In each RESULTS message, the

vote is the classification made using the combined local and shared feature

value sets. When this is not available because the Agent never received a

SHARE message, the AgentController uses the classification made using

only the local feature value set, weighted for less influence. The system’s

classification is the majority vote. See Algorithm 2, in which θl represents

the weight of a classification derived from local feature values only.

– The AgentController updates each Agent’s reputation. For each Agent,

each sharing assignment it had garners a rating which can positively or

1Feature definitions are discussed in Sections 3.5.4.1 and 3.5.4.2.
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Algorithm 2 MAS Classification

denote classification by agent ai at time t using only local feature values as lit
denote classification by agent ai at time t using combined local and shared feature
values (e.g. from peer agent aj) as cit
denote the majority classification at time t as mt

denote network activity classes as Ak ∈ A for 1 ≤ k ≤ K
denote the vote tally for network activity class Ak at time t as vkt

Require: 0 ≤ θl ≤ 1
procedure MASClassification(θl)

for all received RESULTS messages resultsit do
if resultsit contains a combined classification cit then

add 1 to the vote tally vkt for Ak for k = cit
else

add θl to the vote tally vkt for Ak for k = lit
end if

end for
mt = k : vkt = max

h
vht where 1 ≤ h ≤ K

return mt

end procedure

negatively affect the reputation. Every Agent furthermore has its rep-

utation decayed regardless of whether it had a sharing assignment, and

regardless of whether it checked in. See Algorithm 1.

– The AgentController sends each Agent a STAY or a MOVE instruction

based on whether the Agent’s reputation is above or below a threshold.

• Wrap-up: Agents wait to receive MOVE or STAY. Upon receiving MOVE, an

Agent selects a neighboring node at random and sends a MIGRATE message

to the node’s AgentManager.

Figure 11 shows the flow of execution of the Agent and the AgentController inde-

pendently. From this Figure it can be deduced that the AgentController has merely

two states: it is either waiting for Agents to check in, or it is waiting for the Agents

to send their results, with significant actions taking place on the transitions between

states as described above. Meanwhile, the Agent has a collection of synchronization-
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Figure 11. MFIRE detailed activity diagrams for the controller and the agent
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related states, and three of the nominal states described above. It is either waiting

for an ASSIGN message from the AgentController, or it is waiting for a peer to send

a SHARE message, or it is waiting for a MOVE or STAY message from the Agent-

Controller.

3.5.3 MFIRE Robust Communications.

With each message, the sender and recipient need to be in agreement with respect

to the higher-level flow of execution. The sender thus includes a timestamp in the

message indicating the expected time at which the recipient’s current state should

end. The type of message and the timestamp are both used by the recipient to

determine whether the message is 1) expected and 2) current.

It may happen that packets are delayed or lost due to congestion on the net-

work. Therefore, in each state, the Agent or AgentController needs to be able to

handle packet loss as well as the arrival of outdated or otherwise spurious messages.

As evidenced by Figure 11, unexpected messages and timeouts generally trigger a

resynchronization.

Synchronization is a process whereby the Agent can update its clock to match

that of the AgentController as well as determine the schedule indicating the time of

future state transitions. This allows the Agent to start collecting observations at the

same time as others in the system, check in with the AgentController at the right

time, and so forth.

Clock synchronization uses the same basic algorithm employed by the Network

Time Protocol (NTP) described in RFC 5905 [118]. The Agent sends a SYNC message

to the AgentController. The AgentController responds with SYNCREPLY, which

contains the time it received the SYNC message as well as the time it sent the SYN-

CREPLY.
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The Agent determines the offset by which it needs to adjust its internal clock to

match that of the AgentController:

θ =
(t1 − t0) + (t2 − t3)

2
(16)

where t0 is the time, by the Agent’s clock, at which it sent SYNC, t1 is the time, by the

AgentController’s clock, at which the SYNC was received, t2 is the time SYNCREPLY

was transmitted (also by the AgentController’s clock), and t3 is the time, by the

Agent’s clock, at which SYNCREPLY was received. This synchronization works well

so long as the traffic in each direction has symmetrical nominal delay. Otherwise, a

bias is incurred of half the difference between the forward and backward travel times

[64].

For details on each type of message that is sent by the system, see Appendix B.

3.5.4 MFIRE Agent: Classification.

In this section we describe the components involved in the Agent’s classification

process: the observations and features used, feature selection, and the classification

algorithm.

3.5.4.1 MFIRE Agent: Observations and Associated Features.

Each timestep, the Agent queries the host for single-step traffic statistics called

observations. In pattern recognition terminology, an observation is simply a special

type of feature. The connotation is that it is among the most “raw” of features avail-

able, in that it takes values directly from the sensors. After a complete observation

cycle, the Agent calculates feature values over the set of observations. The features

used in MFIRE are each based on a single type of observation, and are either the

average or the standard deviation of the values reported for that observation over
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Algorithm 3 Calculate Features

denote the average of the elements of a set X as avg(X)
denote the standard deviation of the set X as stddev(X)
denote the start of the previous observation period as tp
denote the start of the current observation period as tc
denote the observation oi collected at time t as oit
procedure Calc-Features

for all observations oi : 1 ≤ i ≤ 14 do
for all t : tp ≤ t < tc do

Oi ← Oi ∪ oit
end for
favg(i) = avg(Oi)
fstddev(i) = stddev(Oi)

end for
end procedure

the full observation cycle. Infinitely many other features are possible, with likely al-

ternatives including minimum and maximum values observed during the observation

cycle, or composite features involving different types of observations. Exploration of

an extended feature space including these and more is reserved for future research.

Observations at each node in MFIRE involve sums and ratios for node addresses,

ports, packet sizes, and so forth for the full set of currently inbound packets. For

example, one of the observations simply counts the total number of inbound packets.

Another calculates the average packet size per destination < address, port >-tuple.

For a full accounting of the fourteen observations used in MFIRE, see Appendix B.

The selected observation definitions represent statistics of traffic whose distributions

could be expected to change as a result of anomalous network activity. For details

regarding the calculation of 28 features derived from these observations, see Algorithm

3.

The remaining question concerns the length of the observation period over which

features are defined. The length of the period depends on the chosen scale inter-

pretation of the network. As mentioned in Section 3.4.2, three scales are available:
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LOCAL, REGIONAL, and GLOBAL. The scale selection impacts the range of link

lengths, respectively 1, 1 to 10, and 1 to 100 units. This in turn affects the time

required for communications to traverse from one node to another in the network.

The duration of the observation period is the cumulative duration of the five phases

involved in the MAS flow of execution (see Section 3.5.2 and Figure 10). The du-

ration of each phase is equal with the exception of the CHECKIN phase, which is

allotted extra time to allow migrating agents in the previous MOVESTAY phase to

complete their migrations before checking in with the AgentController. The duration

of each phase is specified according to the longest observed message transit time (in

simulation timesteps) from one node to another in a typical 100-node network pro-

duced by the selected topology model (see Section 3.4.3), with approximately 20%

more timesteps added to accommodate messages reasonably delayed by network con-

gestion. The result is that for the LOCAL, REGIONAL, and GLOBAL scales, the

total observation periods are respectively 88, 137, and 813 timesteps long.

3.5.4.2 MFIRE Agent: Combined Features.

The classification using only local features is straightforward. When feature values

shared from a peer are also available, the question is how to combine them. Any

conceivable binary operation may be applied, and a search for one that produces

higher performance falls within the purview of feature generation (see Section 2.2).

We consider three for each single-node feature:

1. The absolute value of the difference between the local value and the peer-

provided value

2. Their average

3. Their product

93



3.5.4.3 MFIRE Agent: Feature Selection.

A filter method based on Bhattacharyya coefficient analysis (see Section 2.2.1)

ranks the features according to a measure of how well they distinguish each class

from the others.

The top three features2 from this Bhattacharyya distance-based ranking are pre-

ferred. Additionally, we examine the correlation between candidate features. When

a pair of features exhibits strong correlation, one of the two is rejected because it is

unlikely to contribute useful information beyond what the retained feature provides

[70]. MFIRE requires the analysis be done for the local feature set as well as for the

combined feature set.

3.5.4.4 MFIRE Agent: Classifier.

The classifier is a Support Vector Machine (SVM) (see Section 2.2 and [91, 74]).

From decision trees to linear classifiers to neural networks, there are many techniques

to choose from. SVM is selected due to its “high generalization performance without

the need to add a priori knowledge,” even in the face of many features [34].

Note the Support Vector Machine employs numerical optimization methods to es-

tablish the classification model. This process is computationally intense. Future work

should identify alternative classification techniques that achieve similar performance

with less computational expense. The object-oriented MAS architecture design ac-

commodates any classification technique in the place of the Support Vector Machine

(see Section 3.6), or even a mixture of classifiers distributed amongst the agents in

the MAS.

2Three features permit visual inspection, by a human, of resulting sample plots of training data
sets, to evaluate class separability.
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Table 2. How the AgentController Rates Providers of Shared Feature Values

Receiver’s classification result, based on feature sets used

Local Only Local + Shared Rating

Same as majority Same as majority +0

Same as majority Differed from majority -0.1

Differed from majority Same as majority +0.1

Differed from majority Differed from majority -0.05

3.5.5 MFIRE Reputation.

MFIRE employs a centralized reputation system per the broad categorization of

[80] (see Section 2.6). This approach puts the reputation of each agent under the

control of a central reputation manager. It allows simplified management of agent

interactions, but is prone to single point-of-failure issues. Future research will examine

the value of a distributed approach.

Agents start with a base reputation value of 0.5, which is twice the migration

threshold value of 0.25 used in experimentation. The AgentController uses Table 2

to modify reputations according to how well providers’ observations helped receivers

vote in step with the majority.

When agents vote in step with the majority, and would have done so even without

the use of the shared observations, there is no reason to rate their providers positively

or negatively. On the other hand, if the agent is prepared to vote in step with the

majority, but ends up not doing so due to the influence of the shared observations, the

judgment of the crowd is viewed as superior to the opinion of a single peer and thus

the provider is rated negatively. Real benefit is perceived when they would have voted

out of step with the majority but for the “corrective help” of the shared observations,

and in such cases providers are rated positively. If the agent votes out of step with the

majority and would have done so even without the shared observations, the provider

is rated negatively. But, not so much as if the shared observations had dissuaded the
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(a) Two Agents Without Decay (b) Two Agents With Decay

(c) Three Agents Without Decay (d) Three Agents With Decay

(e) Four Agents Without Decay (f) Four Agents With Decay

Figure 12. Comparison of reputation curves, using decay vs. not using decay, for single
test runs in the MASNAC system

agent from otherwise voting in step with the majority.

Note that reputation is not explicitly provided either a lower or an upper bound.

On the lower end, consider an agent whose reputation is at 0.30 just prior to a

reappraisal. The lower bound is then 0.30 − 0.1 × (z − 1) where z is the number of

agents in the MAS and 0.1 is the magnitude of the most negative rating attainable

in Table 2. This reputation value does not last longer than is required for the agent

to migrate to new node and receive a reputation reset.

96



On the upper end, when decay is not used, that is, decay := 1 in Algorithm 1, it is

often the case that reputation monotonically increases for certain agents in the popu-

lation. Under this condition, an agent can accrue a sufficiently high reputation as to

ensure it is the dominant preference of all peers for the selection of shared information

provider. With its feature value sets in high demand, it single-handedly exerts a great

deal of influence on the majority classification result, which garners positive ratings

(or at least avoids negative ratings) and further reinforces its continued reputation

dominance.

This is a major motivation for applying reputation decay. In MASNAC, the prede-

cessor to MFIRE, reputation is applied conceptually the same way. The performance

evaluation of MASNAC yields insights into the effect of decay on agent reputation

bounds. As demonstrated in Figure 12, setting decay := 0.9 keeps agent reputations

bounded below 0.8 for the test runs shown.

A final note before proceeding to the details of MFIRE agent mobility: Table 2

shows that rating values are the same regardless of whether the MAS classification

results from a 51% or a 99% majority. Future work should investigate the benefit of

incorporating the size of the majority into the rating determination.

3.5.6 MFIRE Agent Mobility.

Recall that when an agent’s reputation drops below a threshold, the AgentCon-

troller sends a MOVE message during the wrap-up phase (see Figure 11). The thresh-

old value used in experimentation is 0.25. In any case, upon receipt of a MOVE

message, the Agent sends a MIGRATE message to a randomly-selected neighboring

node.

Specifically, the message is sent to an AgentManager on that node. An Agent-

Manager is installed on every node on a common port specified in the PortDirectory.
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The MIGRATE message contains the Agent’s state, allowing the remote Agent-

Manager to reinstantiate the Agent. An Agent’s state consists of its classifier, ob-

servations used, features used, and any required initialization parameters. Once the

AgentManager receives the message, it sends MIGRATEACK to the AgentManager

at the original node. This AgentManager terminates the original executing copy of

the Agent. In Java terminology, it removes the only existing reference to the Agent

(held by the Schedule), making it eligible for garbage collection. The reinstantiated

Agent’s first action is, of course, to synchronize with the AgentController and resume

participating in the MAS at the earliest opportunity.

3.5.7 Agent Distribution: Evidence of Self Organization.

The ability of MFIRE to find effective agent distributions (in terms of location)

without external influence is evidence the system possesses attributes of self organi-

zation [41, 71, 128]. As summarized by Dempster: “Self-organization refers to exactly

what is suggested: systems that appear to organize themselves without external di-

rection, manipulation, or control” [43].

3.5.8 Stability: An Emergent Property.

As agents find ‘good’ vantage points, resulting in consistently high reputation,

mobility decreases, which is to say, stability increases. Because the objective of sta-

bilizing the mobility of the agent population is not modeled or explicitly sought by

individual agents, this qualifies as an emergent property of the multi agent system

(see Section 2.8 and [41], [71], [128]).
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3.5.9 Optimization via a MOEA.

There are a variety of parameters to explore when considering how to optimize

the multi agent system with respect to minimizing classification error. One way of

fine tuning the system is to use a multi-objective evolutionary algorithm (MOEA), as

described in Section 2.7. For example, a MOEA can find values for the rating table

(replacing those shown in Table 2) that result in ‘good’ classification performance

across all traffic classes, based on improvement observed in the average classifica-

tion accuracy in the second half of each test run compared to average classification

accuracy in the first half.

This multi objective approach contrasts with equation 7, which calls for a loss-

function that returns a single value. In this second iteration of our research efforts,

equation 7 is the general approach to training the classifier employed by the agents.

The specific classifier used, the Support Vector Machine, is described in Section 2.2.

The higher-level MAS classifier, on the other hand, maintains the objectives sep-

arately, where each objective is the minimization of prediction error for a specific

class. That is, there are K objectives when there are K classes, and each objective

fk(X) is:

fk(X) = 1− P (Â(X) = k|A(X) = k) (17)

where Â is the MAS classifier, and A(X) is the true attack class.

We use jMetal ([47]). From Table 1 in Section 2.7.2, jMetal provides the necessary

features for our research: it handles continuous as well as combinatorial problems, is

an open framework, and is implemented in Java. The Java implementation facilitates

integration with MASON and MFIRE.

jMetal furthermore has implementations for a variety of MOEAs. Two of the most

popular MOEAs are the Non-Dominated Sorting Genetic Algorithm II (NSGAII)
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and the Strength Pareto Evolutionary Algorithm 2 (SPEA2). They differ in the way

members of the population, each representing a solution, are ranked after fitness

evaluation. See Section 2.7 and [39] for details.

3.6 Java Implementation

Throughout this chapter, the high-level and low-level designs of MFIRE and its

network simulation environment are presented with the implication that the imple-

mentation follows the design closely. This section makes a few remarks regarding

where the implementation includes some additional elements or differs in some way

from the low-level due to Java OOD constraints. Unless otherwise noted in this

section, the implementation matches the design presented in previous sections.

For example, the package hierarchy design shown in Figure 5 is, for the most part,

implemented directly. An additional ‘experiments’ package supports scripted data

generation and experimentation.

The low-level design approach that follows demonstrates good software engineering

practices.

Apart from simply portraying a lower level of detail, Figure 6 reveals a design

refinement over Figure 5. The Process class, acting as a supertype, allows many

subclasses to be implemented that work seamlessly without requiring changes to the

rest of the simulation environment. Note that the Agent and AgentController classes

are shown in Figure 6 to be Process subclasses, because they require the same com-

munications facilities the Process class provides. Our research implements Figure 6,

reflecting a desire to make the system extensible in terms of Processes.

For the same reason, network scenarios are implemented as subclasses of MF Network.

More precisely, most of the scenarios are subclasses of TopgenNetwork (see Section

3.1). In any case, scenarios have been implemented for each type of malicious activ-
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ity investigated (DDoS, scan, worm), and the architecture supports easy expansion

to many more scenarios, including combinations of currently implemented malicious

behaviors or new behaviors. The fact that TopgenNetwork is implemented as a sub-

class of MF Network means that it can also be swapped for a different subclass that

generates topologies in a different way while maintaining interoperability with the

rest of the system.

For malicious processes simulating exploitation, such as the WormProcess, the

Payload abstract class is useful. Subclasses (such as the DoSInstaller and the WormIn-

staller in Figure 5) simply need to implement the execute() method to be ready for

use by the simulation.

Though not shown in Figure 6, the same extensibility applies to the software

classes involved in classification. Agent methods call methods defined in the Classifier

class, which is abstract like the Process class. In object-oriented languages, abstract

classes cannot be instantiated. They specify an interface and provide some common

functionality (method implementations) and attributes to any implemented subclass.

Thus, the SVM Classifier is implemented as one subclass of Classifier, but any other

classification technique may be implemented as well, with no changes to the existing

design required.

The same holds for the Observation and Feature classes. Sections 3.5.4.1 and

3.5.4.2 describe implemented observations and features, but these are simply sub-

classes of abstract classes. Thus, many other features and observations may be im-

plemented for future research.

With respect to the SVM classifier employed locally by each agent, the implemen-

tation used is Soergel’s “jlibsvm” [137], a Java port of LIBSVM [31]. The common

implementation programming language simplifies integration with MFIRE.

With respect to visualization of the simulation (see Sections 3.1 and 3.4 as well
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Figure 13. MFIRE network simulation environment using MASON’s visualization and
GUI facilities

as Figure 5), we implement MF ModelWithUI as a subclass of MASON’s GUIState.

This provides access to MASON’s visualization and GUI facilities (see Figure 13).

MF ModelWithUI is supplied an MF Network in the constructor. From this MF Network

(e.g. a DDoSTopgenNetwork, ScanTopgenNetwork, etc.), the MF ModelWithUI ex-

tracts information required for visualization and presents it using separately defined

classes that inherit from one of MASON’s Portrayal classes. As shown in Figure 5,

implemented Portrayals include the NodePortrayal and the LinkPortrayal. These

classes use public methods in their associated domain classes to retrieve any informa-

tion required for visualization. For example, the LinkPortrayal adjusts the color of

the visualized Link in accordance with the Link’s current traffic load.

A small but significant detail for visualization is the use of intermediate timesteps

to smooth the animation; specifically, the Link color transitions. We insert a number
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of intermediate visualization timesteps between each pair of consecutive domain sim-

ulation timesteps. On each visualization timestep, the current Link color is updated

to a shade closer to the ‘target’ color for the Link’s current load. Typically, we use

either 10 or 100 visualization timesteps, depending on whether animation smoothness

or simulation speed is more important. This approach could allow animation of key

packets transiting the network, especially those used for agent migration or worm

propagation. Such animations will yield faster intuitive insights in future research.

In current research, the changing colors of the Links aids visual validation of desired

simulated traffic effects, such as those caused by DDoS (see Section 5.2.2.1, Figure

17) and worm attacks (Section 5.2.2.3, Figure 20).

3.7 Summary

This chapter covers the aspects of the MAS-network system design, including

the network simulation framework and implementation of the multi agent system for

network attack classification. We describe how the MAS is designed to show evidence

of self organization as well as emergence. Finally, the MOEA approach is discussed

for finding rating table values that result in good MAS classification performance for

each network attack class.

The next chapter presents the major differences between MFIRE and its prede-

cessor, MASNAC, and their associated network simulation environments.
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IV. MASNAC: Network Simulation and Multi Agent

System Design

MFIRE (and its network simulation environment), presented in Chapter III, rep-

resents the second design iteration of our development. In this chapter, the initial

MASNAC design is presented. It provides an important understanding of the associ-

ated rationale for the design evolution into MFIRE.

This chapter summarizes key differences between the first and second iterations of

our research. Section 4.1 presents an overview. Section 4.2 identifies key differences

in the network simulation. Section 4.3 focuses on the differences in the multi agent

classification systems. Section 4.4 summarizes the chapter.

Though essential system validation tests for MFIRE and its network simulation

environment are complete and presented in Section 5.2.2, total classification perfor-

mance evaluation for MFIRE awaits further development. In the case of MFIRE’s

predecessor, MASNAC, however, classification performance evaluation is reported in

Section 5.2.1 and [73] and [72].

4.1 Overview: Key differences

Table 3 summarizes the key differences between the first and second iteration of

our research. In general, the second iteration represents a significant step up in terms

of model and multi agent system complexity. There are also some differences in some

of the key assumptions.

4.2 Network Simulation

This section focuses on the specific differences in the network simulation used in

each iteration.
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Table 3. Comparison of Iterations 1 and 2

Iteration 1 Iteration 2

AS Network Scale ‘local’ only ‘local’, ‘regional’, ‘global’

AS Network Size 10 nodes 100 nodes

AS Network Topology manually designed produced by Internet topol-
ogy modeler

Node Behavior restricted processing capac-
ity / shut down under heavy
load

unrestricted processing ca-
pacity

Packet Payloads simulated quantity only payloads implemented and
used for interprocess com-
munication

Attacks DoS DDoS, Worm, Scan

MAS classifier minimum euclidean dis-
tance

support vector machine

MAS communications out-of-band, instantaneous in-band with network-based
delays

Feature Selection wrapper method in a
MOEA

filter method: Bhat-
tacharyya distance, correla-
tion

MAS Objective identify source and target of
DoS attack

identify type of attack

4.2.1 Node Behavior.

One of the major differences in key assumptions relates to the ability of nodes

to handle large quantities of traffic. The first iteration network simulation sets a

per-node traffic processing limit equal to 80% of the aggregate inbound link capacity.

Once this quantity is exceeded, the node is ‘knocked off-line’, muting all resident

processes and rendering connected links unusable. The second iteration removed this

effect due to a lack of a strong modeling basis for representing load-based router

failure conditions. Future research may reinstate the router failure effect, as it is

observed in the real world (see [32] for an example).
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Figure 14. Iteration 1 network

4.2.2 Size and Scale.

Other network simulation differences relate to size and scale. Figure 14 shows the

network that served as the basis for MASNAC performance evaluations. It consists

of 10 nodes compared to the 100-node networks used in MFIRE development and

testing. Furthermore, first iteration networks consist of links that are all one unit in

length. The second iteration network design is much more permissive, including three

different scales, each with a different range of link lengths, to accommodate clients

with different needs (see Sections 3.4.1 and 3.4.2).

4.2.3 Topology.

The topology of the network shown in Figure 14 is manually designed. In MFIRE’s

network design, by contrast, topologies are generated by the Topgen Internet topology

modeler (see Sections 3.4.3 and 2.1.2) incorporating the latest in Internet topology

modeling techniques.

4.2.4 Packet Payloads.

The packets in the MASNAC’s network design do not carry any usable content.

A ‘quantity’ field simulates the size of the packet and is used to create the desired
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Table 4. Attack Classes

Class Source Target

1 0 7

2 9 7

3 5 7

4 0 3

5 9 3

6 5 3

7 0 2

8 9 2

9 5 2

10 - -

traffic-based effects. Packets in MFIRE networks may be created that behave the

same way, or one can create packets that carry actual messages used for simulated

interprocess communication across the network.

4.2.5 Attacks.

The attacks implemented for the first iteration network simulation are all of the

simple Denial of Service (DoS) variety. Each DoS attack is defined by a source and

a target. In each case, the technique is the same: send large numbers of small

packets from the source to the target in an attempt to flood all connected links. The

combinations used in experimentation are listed in Table 4.

4.3 Multi Agent System

This section focuses on the multi agent system aspect of each design iteration

and how they differ. Both systems make use of a reputation system governing agent

mobility. But the classifiers, communications, features, feature selection methods,

and classifier objectives all have some key differences.
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4.3.1 MASNAC Classifier.

The MASNAC classification technique is the simple minimum distance classifier

(MDC), compared with MFIRE’s support vector machine (see Section 2.2 for descrip-

tions and references for both).

MASNAC, like MFIRE, has agents share observations with each other. Agents

make two classifications: one based purely on locally-available observations and one

based on both local and remotely provided observations. As in MFIRE, the classi-

fication from the combined set of observations is used to represent the vote of each

agent as to the attack class, with the majority vote used as the system’s output.

4.3.2 MASNAC Communications.

MASNAC communications are assumed to be out-of-band, not subject to the haz-

ards of congestion in the network. Communications are furthermore instantaneous;

neither propagation nor transmission delay are modeled.

MFIRE, on the other hand, is subject to the potential difficulties arising from

network congestion: packets sometimes fail to arrive, and MFIRE is designed to cope

with this situation. Even without congestion, normal transmission and propagation

delays affect MFIRE communications.

4.3.3 MASNAC Features.

Features in MASNAC classification are all node-specific. Each feature is fur-

thermore a statistic related to the traffic quantity arriving on a particular inbound

link and headed for a particular destination node. For each such link-destination

pair, we collect traffic quantity statistics (mean and standard deviation) over ‘short’,

‘medium’, and ‘long’ periods of time.

In order to fully characterize each attack class for classifier training purposes, it
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is necessary to collect these statistics for every node in the network. Each agent is

supplied each of the class means in order to employ the minimum distance classifier.

Note that a feature subset selection string produced by the feature selection process

(see Section 4.3.4) restricts the actual features used in the MDC.

This requirement to collect all statistics for every node in the network has sig-

nificant implications for the scalability of MASNAC and motivates a change in how

features are defined for the MFIRE in the second iteration.

MFIRE features are not meant to be associated with specific nodes in the network.

Rather, training samples are created by sampling statistics from two random nodes

in the network. Candidate nodes in this process are restricted to a subset of the first

20 nodes created by the topology generation process. Due to preferential attachment

in the topology generation model, these nodes are more likely to be highly connected

compared with nodes created later in the process (see Section 2.1.2 and [138].

4.3.4 MASNAC Feature Selection.

The agents in MASNAC are supplied a feature subset selection vector which in-

dicates, for every node in the network, which local features are eligible for use in

classification.

The feature selection process in MASNAC is handled by the Non-Dominated

Sorting Genetic Algorithm (NSGA-II) (see Section 2.7.1 and [39]). For reasonable

convergence, parameters for NSGA-II include a population size of 200, a crossover

probability of 0.9, a mutation probability of 0.02 (per bit in each chromosome), and

an evaluation limit of 200,000 generations.

The chromosome of each individual in the population is a feature subset selection

vector SX as in Section 3.2. The minimum distance classifier is used in the fitness

function, which is also supplied with a set of labeled validation data. The problem is
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formulated as a multi objective optimization problem, with criteria f as follows for

i = 1, . . . , K:

(minimize)fi(~x
∗) = 1− P (Â(x) = Ak|A(x) = Ak) (18)

An additional objective fv is to minimize the number of distinct nodes providing

the features involved in classification. The purpose of this objective is to reduce the

bandwidth required for MASNAC’s classification process.

As reported in [73], the NSGA-II MOEA typically produces 25 selected features

that are somewhat evenly spread across all ten nodes.

4.4 Summary

This chapter discloses key differences between the first and second design iterations

of our research. The distinguishing characteristics of the network simulation environ-

ments developed in each iteration are provided. The contrast between the multi agent

system architectures, their communications and their classification methodologies, is

also clarified.

The next chapter provides testing results and analysis: for the first iteration,

MASNAC performance is evaluated; for the second iteration, system validation tests

demonstrate essential model and MAS functionality.
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V. Experimentation and Analysis

The previous two chapters provided system design and implementation details

for MASNAC and MFIRE. This chapter presents the experimentation and analaysis

plan evaluating the hypothesis objectives stated in Section 1.3. Section 5.1 describes

the experimental design. Results and analysis are presented in section 5.2. Finally,

Section 5.3 concludes the chapter.

5.1 Experimental Design

Barr et al. [16] explain the need for an experimental design that helps determine

whether a new heuristic method contributes something important. They present a

list of possibilities. A heuristic method makes a contribution if it is:

• Fast: produces high-quality solutions quicker than other approaches;

• Accurate: identifies higher-quality solutions than other approaches;

• Robust: less sensitive to differences in problem characteristics, data quality, and

tuning parameters than other approaches;

• Simple: easy to implement;

• High-impact: solves a new or important problem faster and more accurately

than other approaches;

• Generalizeable: having application to a broad range of problems;

• Innovative: new and creative in its own right.

Barr furthermore asserts [16] that research reports about heuristics are valuable

if they are:
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• Revealing: offering insight into general heuristic design or the problem structure

by establishing the reasons for an algorithm’s performance and explaining its

behvaior;

• Theoretical: providing theoretical insights, such as bounds on solution quality

From Section 1.3, the goal of our research is to develop an effective flow-based,

multi agent system for inter-AS network attack classification.

The heuristic used to search for effective agent distributions is identified in the

hypothesis: that a flow-based, multi agent network attack classifier can be made more

effective by:

1. employing a reputation system to govern agent mobility

2. adding a decay factor to each agent’s reputation to further spur agents to find

nodes providing the most “useful” information

Therefore, the reputation system is the heuristic under study. Qualitatively, we

observe that it is simple to implement and innovative. But the principle contribu-

tion from Barr’s list our experimentation aims to demonstrate is that the use of a

reputation system increases the accuracy of the multi agent network attack classifier.

The goal of our experimental design is to demonstrate whether we succeed in our

research objectives. From Section 1.3, the research objectives are to:

1. Develop an effective network simulation environment appropriate for the prob-

lem scope.

2. Validate the proper functioning of simulated malicious traffic.

3. Validate the proper command, control, and communications in the multi agent

intrusion detection system.
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4. Study the effects of several factors on classification accuracy.

The order of these objectives suggests a natural chronological sequence of develop-

ment and testing. It is the case, however, that MASNAC, the first iteration of design

and implementation, is quantitatively assessed in terms of classification accuracy,

while its successor, MFIRE, has yet to receive a similarly detailed assessment.

We therefore reorder the research objectives, starting with MASNAC’s perfor-

mance assessment and proceeding to the evaluation of the successor network simula-

tion environment and multi agent system MFIRE. Thus, the refined and renumbered

objectives are to:

1. Study the effects of several factors on MASNAC classification accuracy.

2. Develop an effective network simulation environment appropriate for the prob-

lem scope and exhibiting more complexity than the environment used for MASNAC.

3. Validate the proper functioning of simulated malicious traffic in the second it-

eration network simulation environment.

4. Validate the proper command, control, and communications in the MFIRE.

The benchmarks for these research objectives are given in the next two sections,

which detail respectively the designed performance assessment for MASNAC and the

validation for MFIRE.

5.1.1 MASNAC Performance Assessment: Response Variables, Fac-

tors, and Statistical Design.

For MASNAC’s performance assessment, we use the Wilcoxon rank-sum statistical

comparison technique discussed in Section 2.9. We examine the minimum, maximum,

mean, and standard deviation in classification accuracy over 30 test runs for each
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selected combination of factors. Conducting this many test runs allows a qualified

judgment as to whether normality assumptions for the generated distribution are

justified. Each test run consists of a persistent instance of MASNAC classifying and

adapting over the course of 100 consecutive attack rounds. For each attack round,

the attack (see Table 4) is selected uniformly randomly.

The factors studied are:

• Number of agents: two, three, and four

• Reputation: not used, used without decay, and used with decay; denoted in

some of the tables respectively as A, B, and C

• Time of MAS classification: four, eight, twelve, and sixteen timesteps into the

simulation, denoted T1, T2, T3, and T4

Note that when reputation is not used, on each round each agent uniformly ran-

domly selects a peer to provide shared observations. Agents in this case do not move

from their randomly-selected starting nodes.

5.1.2 MFIRE: Qualitative Evaluations.

Assessment of the effectiveness of the MFIRE’s network simulation environment

includes the following tests, resulting from the research objective and benchmark

specification presented in Section 1.3:

• Implement a DDoS attack and a ping process. Use the ping process under be-

nign network conditions to ping the target node. Demonstrate reliable response

from the target. Launch the DDoS attack at the same target node. Ping this

node during the attack and demonstrate unreliable response from the target.

• Implement a UDP-style scan attack [146] involving a scanning process, an target

process that responds actively to scan packets, ‘normal’ processes that make
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no response, and ICMP “port unreachable” messages sent by the host node in

response to packets sent to ports with no listening processes. Set up some target

processes on random ports on selected nodes. Launch a block scan covering the

possible addresses and ports where the target processes might be found. Print

the scan report once the scan is complete (each sent scan packet resulted in

either a response or timeout). Demonstrate ability to find target processes via

scanning.

• Implement a worm process and an insecure process. Simulate a global set of

vulnerabilities and associated exploits. Initalize a worm processes with a subset

of exploits. Initialize insecure processes all over the network, each with a random

subset of vulnerabilities. Let the worm loose on one initial node. Observe the

worm’s ability to propagate copies to other nodes when it contains an exploit

matching a vulnerability held by a resident insecure process. Observe new worm

attacks spreading from newly-exploited nodes.

Assessment of the command, control, and communications of the second iteration’s

multi agent system include a series of tests validating proper flow of execution as

designed, as shown in Figure 11. The full set of tests for MFIRE execution flow

validation is provided in Appendix C.

5.1.3 Test Computational Environment Factors.

Experiments are conducted on an HP EliteBook laptop, 2.79 GHz Intel Core 2

Duo processor, 2.96 GB of RAM, Windows XP Professional 2002, Service Pack 3.

Java Runtime 1.6 update 22 is used. Simulations and experiments are developed and

executed in the Galileo distribution of the Eclipse integrated development environ-

ment.

The full set of tests executed and completed within six hours.
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5.2 Results and Analysis

The results of experimentation for MASNAC and MFIRE are presented in this

section.

5.2.1 MASNAC Performance Assessment: Results.

Several experimental observations can be made from the statistics reported in

Tables 5, 7, and 9 providing insight into MASNAC performance.

First, regardless of the number of agents used, and regardless of the timestep at

which the classification is made, using reputation generally outperformed the system

that did not. Using reputation with decay generally outperforms using reputation

without decay. Decay spurs those agents not receiving negative ratings to nevertheless

move to different nodes if over time they do not receive positive ratings, either. It

is presumed that this slight increase in exploration yields the measured benefits, but

Wilcoxon rank-sum hypothesis testing (reported in Tables 6, 8, and 10) shows this

cannot be conclusively asserted in all cases.

Second, in most cases classification accuracy starts low at T1, achieves a maximum

at T2, and degrades as the time of classification within each scenario is pushed to

T3 and T4. This is because as time passes during a denial of service attack, more

nodes have the possibility of shutting down, generating cascading effects as packets

are routed differently. With a larger window of time, these cascading effects cause the

variance in the traffic statistics to grow, making minimum Euclidean distance-based

classification more difficult.

Third, the standard deviation trends downward from using no reputation, to using

reputation without decay, to using reputation with decay, reflecting potentially more

consistent results from the latter system.

In these tables, bold indicates the ‘best’ value obtained for the column statistic.
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Table 5. Two Agent Classification Accuracy Over 30 Runs

System Class. Time Min Mean Max Std Dev

No Rep. T1 0.25 0.59 0.82 0.14

T2 0.29 0.63 0.87 0.16

T3 0.48 0.65 0.81 0.09

T4 0.38 0.60 0.73 0.08

Rep w/out Decay T1 0.36 0.56 0.83 0.11

T2 0.24 0.66 0.86 0.13

T3 0.50 0.62 0.76 0.08

T4 0.42 0.58 0.77 0.09

Rep w/ Decay T1 0.31 0.59 0.80 0.12

T2 0.44 0.69 0.88 0.09

T3 0.53 0.67 0.76 0.06

T4 0.46 0.61 0.73 0.07

Table 6. P Values For Two-Sided Wilcoxon Rank Sum Test for Two Agent System

Median P-Value

A B C A vs B A vs C B vs C

T1 0.600 0.540 0.605 0.166 0.801 0.188

T2 0.635 0.635 0.695 0.469 0.176 0.164

T3 0.670 0.630 0.670 0.280 0.403 0.014

T4 0.600 0.585 0.625 0.374 0.524 0.150

In the ‘Mean’ column only, numbers in italics represent the ‘best’ values obtained for

a particular classification time across the three reputation approaches.

In Table 5, for the four classification times, four out of four best mean results

are obtained by the system using reputation with decay (including a tie at T1 with

the system that did not use reputation). Using reputation with decay furthermore

achieves three of the four best (smallest) standard deviations, indicating more con-

sistent results.

To validate the conclusion that using reputation with decay is best, we perform
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(a) Two Agent System (b) Three Agent System (c) Four Agent System

Figure 15. Classification accuracy of MASNAC under different parameters; in each
boxplot: no reputation; reputation without decay; reputation with decay

hypothesis testing using a two-sided Wilcoxon rank-sum test. The P-values reported

in Table 6 indicate the likelihood that two sets of samples could have been collected

under the assumption they came from a single distribution. Low values suggest

statistical evidence of significant differences in system performance. Anything under

5% is marked bold. The same information is conveyed visually using boxplots in

Figure 15.

It turns out that, according to Table 6, despite the case for optimism presented in

Table 5, a statistically significant increase in performance is elusive. It is observed in

one case for the two-agent system: at T3, using reputation with decay is significantly

better than using reputation without decay.

In the three agent case, Table 7 again suggests superior performance when using

reputation with decay for T1, T2, and T3. In Table 8, MASNAC using reputa-

tion with decay is shown to have significantly better performance than either of the

alternatives at T2.

In the four agent case (Table 9), three of the four best mean results are produced

by reputation without decay. Reputation with decay achieves the best mean result at

T3, and posts the best results for standard deviation in all levels of the time factor.

However, Table 10 indicates that it is the system using reputation without decay that
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Table 7. Three Agent Classification Accuracy Over 30 Runs

System Class. Time Min Mean Max Std Dev

No Rep. T1 0.34 0.56 0.75 0.10

T2 0.40 0.63 0.85 0.13

T3 0.55 0.65 0.77 0.06

T4 0.46 0.59 0.72 0.08

Rep w/out Decay T1 0.35 0.56 0.74 0.09

T2 0.54 0.65 0.78 0.08

T3 0.51 0.66 0.79 0.07

T4 0.41 0.60 0.73 0.09

Rep w/ Decay T1 0.42 0.59 0.71 0.07

T2 0.52 0.71 0.84 0.06

T3 0.50 0.64 0.81 0.07

T4 0.51 0.61 0.74 0.06

Table 8. P Values For Two-Sided Wilcoxon Rank Sum Test for Three Agent System

Median P-Value

A B C A vs B A vs C B vs C

T1 0.535 0.540 0.590 0.853 0.178 0.195

T2 0.645 0.640 0.720 0.679 0.009 0.006

T3 0.660 0.660 0.625 0.584 0.374 0.153

T4 0.575 0.630 0.590 0.433 0.254 0.756

achieves statistically significant better performance than the system not using repu-

tation for T1 and T2. At T3, using reputation with decay does achieve significantly

better performance than using reputation without decay, but neither system signif-

icantly outperforms the system that does not use reputation. The primary effect of

reputation decay is to induce mobility in stagnat agents, but mobility becomes less

important with a higher agent-to-node ratio.

These results suggest that the best factor-level combination for using reputation

with decay involves three agents and a time of classification of T2. Furthermore, mov-
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Table 9. Four Agent Classification Accuracy Over 30 Runs

System Class. Time Min Mean Max Std Dev

No Rep. T1 0.37 0.56 0.77 0.10

T2 0.44 0.67 0.80 0.09

T3 0.57 0.67 0.80 0.06

T4 0.44 0.62 0.74 0.08

Rep w/out Decay T1 0.40 0.61 0.74 0.08

T2 0.55 0.73 0.84 0.07

T3 0.47 0.66 0.76 0.07

T4 0.51 0.63 0.78 0.07

Rep w/ Decay T1 0.45 0.60 0.73 0.06

T2 0.60 0.71 0.82 0.06

T3 0.52 0.69 0.78 0.06

T4 0.50 0.61 0.73 0.06

Table 10. P Values For Two-Sided Wilcoxon Rank Sum Test for Four Agent System

Median P-Value

A B C A vs B A vs C B vs C

T1 0.570 0.595 0.595 0.048 0.151 0.441

T2 0.690 0.715 0.720 0.019 0.064 0.420

T3 0.670 0.670 0.700 0.482 0.160 0.025

T4 0.615 0.635 0.615 0.756 0.407 0.139

ing from the three agent case to the four agent case reveals the declining importance

of reputation decay as the number of agents in the system is increased.

While reputation with decay is not a panacea, it is clearly beneficial under specific

conditions and never harmful under any of the tested conditions. Where does the

benefit come from? Observe that the only way for agents to achieve stability in a

system using reputation with decay is to find, collectively, nodes that each contribute a

unique set of information capable of swaying combined classification determinations,

but only such that the majority of combined classifications agree with each other.
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Figure 16. MFIRE DDoS Attack Test: Console Output

Any other case indicates that some of the nodes provide either redundant, or worse,

misleading information.

5.2.2 MFIRE and Associated Network Simulation Environment As-

sessment: Results.

This section presents the results of the qualitative tests for MFIRE and its associ-

ated network simulation environment. These include tests of DDoS, scan, and worm

attacks, as well as tests validating MFIRE’s communications and flow of execution.

5.2.2.1 MFIRE: DDoS Test.

This test creates a DDoS attack scenario involving multiple DoS attackers, a single

target, and a ping process that pings the target before and after the attack starts.

From the console output in Figure 16, the ping process sends two sets of pings, with
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Figure 17. MFIRE DDoS Attack Test: Vizualization

10 pings in each set. The ping process sends one ping on each timestep and receives

100% response for the first set of pings with no variance in delay. The DDoS then

commences from six sources. A short time later, the ping process starts sending the

second set of pings. Responses are received for the first four. The time delay of these

responses is significantly longer than what was experienced for the previous set of

pings, with the last taking more than twice as long to return (33 timesteps vs. 16).

The cause of this delay is the random rerouting of the packets when the preferred

link is full (see Section 3.4.4). The rest of the pings fail, for a total loss rate of 60%.

Figure 17 provides visual indication of what happens in this scenario. In this

visualization, each link is divided in half by a black band. For a given node with

an attached link, the half of the link directly connected to it shows inbound traffic

flow, while the half on the other side of the band shows outbound traffic flow to the

adjacent node. The shade of each half link changes according to load: white, on

one end of the spectrum, represents zero load; black, on the other end, represents
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Figure 18. MFIRE: Figure 9 redisplayed to show block scan conducted by the Scan-
Process class

maximum load.

Observe that most of the links inbound to the target are at or near maximum

capacity. Spillover effects are evident at the adjacent node toward the top of the

figure. This qualitative test demonstrates the desired effect: reliable ping response in

the absence of a DDoS attack, and unreliable response in its presence.

5.2.2.2 MFIRE: Scan Test.

Figure 18 demonstrates successful operation of the scan, in which the report shows

the difference in the responses to the scan packets. This Figure shows evidence of two
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(a) Worm infections over time (b) Successful worm attackers over time

Figure 19. Worm attack growth charts

InsecureProcesses, one on each node, having replied to the scan packet with “OK.”

It furthermore shows evidence of one unknown process which returned no response

to the scan packet. For all other ports, the node sent “UNREACHABLE” back to

the scanner. The desired effect is achieved and the test is successful.

5.2.2.3 MFIRE: Worm Test.

The Worm test creates a worm that makes one propagation attempt (attack)

each timestep. The environment has four vulnerabilities. Each node has a resident

InsecureProcess with at least one and up to four of these vulnerabilities. Each vul-

nerability is assigned a per-attack success rate (assuming a matching exploit) of 20%.

The worm is armed with exploits for two of the four vulnerabilities, selected randomly.

Figure 19 shows the worm growth rates. Figure 19a shows the number of infected

nodes over time, while Figure 19b shows the number of infected nodes having at

least one successful attack over time. In both cases, exponential growth is evident

for the majority of the simulation, until growth tapers off because most of the hosts

vulnerable to one of the worm’s exploits have already been infected.

Figure 20 provides a visualization of the infected network. In this scenario, the

scale is set to ‘regional’, allowing link lengths up to 10 units. Black bands separate
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Figure 20. Worm attack visualization

each of the segments of the link, but one black band divides the link in half. Each

half of the link is visually representative of the same concept as used in the DDoS test

case: all traffic on each half of the link flows toward the node to which it is directly

attached, thus providing a visual separation of the full duplex nature of the link.

While no single link in Figure 20 appears saturated as is the case in the DDoS

scenario, many links are sustaining high loads at this point in the simulation, which

is at approximately t = 120 or near the point at which the growth of the worm slows

for lack of uninfected and vulnerable targets.

Having demonstrated the desired qualitative effects, this worm attack test is suc-

cessful. As the third of three complex behaviors, the successful implementation of

the worm attack demonstrates the ability of MFIRE’s network simulation to support

a range of flow-based attacks, satisfying two research objectives:

• Develop an effective network simulation environment appropriate for the prob-

lem scope.
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• Validate the proper functioning of simulated malicious traffic.

5.2.2.4 MFIRE Communications and Execution Flow Tests.

The remaining tests involve the communications protocol and execution flow of

MFIRE. Eleven test cases demonstrating a range of communications failures are im-

plemented. The details of these test cases are provided in Appendix C. All test cases

are currently successful.

5.3 Summary

This chapter presents the results of classification performance evaluation for MASNAC,

our first design iteration of a multi agent network activity classifier, as well as qualita-

tive system validation for the second design iteration, MFIRE: the network simulation

environment and malicious traffic scenarios as well as the multi agent system.

Quantitative testing of MASNAC performance and qualitative validation of MFIRE

operation demonstrates achievement of the research objectives:

1. Develop an effective network simulation environment appropriate for the prob-

lem scope.

2. Validate the proper functioning of simulated malicious traffic.

3. Validate the proper command, control, and communications in the multi agent

intrusion detection system.

4. Study the effects of several factors on classification accuracy. Factors include

the number of agents, the time in the scenario at which classification occurs,

and the use of reputation (i.e. not used, used without decay, and used with

decay).
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The next chapter contains conclusions and highlights opportunities for future re-

search.
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VI. Conclusions and Future Research

This chapter highlights the successes and opportunities resulting from our research

investigation concerning the development of a multi agent system for flow-based in-

trusion detection. Section 6.1 discusses some observations of the first and second

design iterations, that is, of MASNAC and MFIRE respectively. Section 6.2 high-

lights opportunities for future research activity. Finally an overall research summary

is presented.

6.1 Conclusions

The critical need for research investigations into distributed, flow-based intru-

sion detection systems is stated in Chapter I. As noted by Sperotto et al. [139],

“distributed detection is particularly important... because the amount of traffic on

high-speed networks is still increasing, suggesting that scalability will remain an issue

in the future.”

Our successful research effort develops, in two iterations (see Chapters III and IV),

a unique multi agent system designed to engage in flow-based intrusion detection in a

distributed way. The major innovations of this effort include: 1) the use of reputation

as a means of influencing the mobility patterns of the agents; and 2) a network

simulation environment for MASON with the associated, animated visualization.

Both MAS classifiers involved the use of a classification technique at the local,

Agent level (minimum euclidean distance for MASNAC / Support Vector Machine

for MFIRE), the collection of local classification decisions at a central point, and the

use of the majority vote as the MAS classification output.

Our research hypothesis from Chapter I is validated, indicating that we can in-

crease the effectiveness of a flow-based, multi agent network attack classifier by:
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1. Employing reputation to motivate agents to move when perceived as not pro-

viding useful information to peers;

2. Decaying the reputation to provide further impetus for agents to find the best

vantage points.

with qualification; the benefit is observed for specific conditions. But, under no tested

condition did reputation with or without decay perform worse than not using decay.

See Section 5.2.1.

The testing and analysis conducted in Chapter V indicate that the Chapter I

objectives are achieved, and thus, the hypothesis should be accepted for the initial

model.

Recall that self-organization is the ability of a system to adapt in pursuit of better

performance (see Section 2.5). The multi agent system reconfigures itself (in terms of

spatial distribution of the agents) through the use of reputation. Because performance

gains in certain conditions are attributable to the use of reputation, the multi agent

system exhibits evidence of self-organization.

In the second design iteration, MFIRE, the desired functionality of the network

simulation environment and the malicious activity classes has been achieved, demon-

strated in the validation tests discussed in Section 5.2.2. The basic operation of

the multi agent system in terms of flow of execution and commmunication is also

validated.

6.2 Future Research Activity

The most immediate need for future research is a total, comprehensive perfor-

mance evaluation of MFIRE. Factorial design can investigate the effects of various

factors individually and jointly for increased understanding of how to set system pa-

rameters for effective performance. The objective is to determine the effectiveness
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of the support vector machine for classification in this domain, as well as the effec-

tiveness of a MOEA-produced rating table, compared with the effectiveness of our

human-designed rating table.

One of the products that evolved out of our research is a set of network simulation

model refinements and extensions that, if pursued, may increase the range and depth

of MFIRE impact. These include:

• Reinstating the node failure effect used in the first iteration (see Section 4.2.1),

with a closer fit to real-world empirical observations;

• Modeling asynchronous communications in finer detail, including finer-grained

random delays and noise on the line corrupting messages;

• Exploring alternative topology generators, such as RealNet [37], [36], and com-

paring with current topology generation to evaluate impact on system perfor-

mance;

• Implementing nodes that handle routing more intelligently when faced with

network congestion;

• More complex attacks, including botnets and attacks that first conduct recon-

naissance via scans.

Finally, there are several key areas for future research investigations to improve

the multi agent classifier. They include:

• Using an existing agent framework such as JACK, Cougaar, or JADE to leverage

tools for agent communications and interoperability [105];

• Feature generation to more fully investigate the feature space and thereby find

such features as will increase the efficiency and effectiveness of classification;
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• Implement a distributed reputation system and compare with the existing, cen-

tralized approach;

• Evaluate different classifiers and compare performance, including mixtures of

different types of classifiers across the agent population;

• Evaluation of different MOEAs for best general results in producing rating

tables that lead to effective MAS behaviors.

6.3 Overall Summary

This research effort validated our qualfied hypothesis that reputation, when used

to influence agents to seek better vantage points on the network, generally leads to

improvements in the multi agent system’s network attack classification performance

for specific conditions. This is an important contribution that supports our goal of

developing an effective, flow-based, multi agent system for inter-AS network attack

classification.

The field of research for distributed, flow-based intrusion detection is new and

wide open for exploration. In the fight to protect the inestimable advantages of

our networks of autonomous systems, whether for civilian applications or in support

of operations conducted by the United States military with which we are affiliated,

one cannot afford to overlook multi-agent, flow-based intrusion detection techniques.

It is our hope that the proof-of-concept simulation software implemented in this

research be further investigated, or serve as an inspiration for parallel efforts, with

the possibility of creating an effective and scalable complement to a suite of network

defense capabilities.

131



Appendix A. Evolutionary Algorithms: Details and

Applications

This appendix provides formalisms for generic, single objective evolutionary algo-

rithms as well as some examples of how evolutionary algorithms have been applied.

1.1 Evolutionary Algorithms: Details

For a single objective evolutionary algorithm, Bäck defines an EA as an 8-tuple[8]:

EA = (I,Φ,Ω,Ψ, s, ι, µ, λ)

where I is the space of individuals (analagous to the feasible region M). Φ : I → R

is a fitness function that assigns real values to individuals based on performance with

respect to the objective.

Ω = {ωΘ1 , . . . , ωΘz |ωΘi : Iλ → Iλ} ∪ {ωΘ0 : Iµ → Iλ}

is a set of probabilistic genetic operators ωΘi such as mutation or recombination.

Each operator is controlled by specific parameters summarized in the sets Θi ⊂ R.

The selection operator is

sΘs : (Iλ ∪ Iµ+λ)→ Iµ

which may change the number of individuals from λ or λ+µ to µ, where µ, λ ∈ N

and µ = λ is permitted. Here, λ is the number of offspring and µ is the number of

parents in the population. As with the probabilistic genetic operators, the selection

operator may make use of a set of parameters; specifically, Θs.

The termination criterion for the EA is expressed by ι : Iµ → {true, false}. The
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generation transition function Ψ : Iµ → Iµ specifies the complete process by which we

transition from the population P of the current generation to that of the subsequent

generation:

Ψ = s ◦ ωΘi1
◦ . . . ◦ ωΘij

◦ ωΘi0

Ψ(P ) = sΘs(Q ∪ ωΘi1
(. . . (ωΘij

(ωΘi0
(P ))) . . .))

Here, {i1, . . . , ij} ⊆ {1, ..., z}. That is to say, Ψ is permitted to use a subset of

available, parameterized operators. Finally, Q ∈ {∅, P}. This way, Ψ may specify

whether selection includes the population as it existed prior to the current generation’s

transformation along with the transformed population. The operator ω0 : Iµ → Iλ

serves to change the population size so that the required λ offspring individuals are

produced from the µ parents. Selection reverts the population size to µ.

A population sequence P (t+ 1) = Ψ(P (t)),∀t ≥ 0 naturally results from Ψ, where

t denotes the generation. Members of P (0) are typically initialized randomly, but

P (0) may also be generated from a specified starting point.

Genetic operators come in many varieties but are broadly categorized by the

number of “parents” involved. Mutation is an example of an asexual genetic operator,

while recombination is typically sexual, involving two parents, but could be extended

(without basis in biology) to involve arbitrarily many parents.

Permissible mutations depend on the representation of the individual. A common

case is the bitstring representation. A bit-flip mutation flips the selected bit with some

probability. Similar single-parameter mutations for parameters in other domains may

involve an attempt to constrain the mutation so that the new value is “close” by some

measure to the old value (for example via shifting by a value drawn from a gaussian

distribution).
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Other genetic operators are similarly representation-dependent. Common recom-

bination operators include one-point crossover, where a parameter position is selected

at random via some distribution (e.g. uniform), and the offspring is formed by copying

the all parameter values in the first parent up to and including the crossover point,

and taking the rest of its values from the second parent after the crossover point.

In general, n-point crossover extends this concept to n randomly selected crossover

points.

Algorithm 4 Outline of an Evolutionary Algorithm

t := 0
initialize P (0) := {~a1(0), . . . ,~aµ(0)} ∈ Iµ
evaluate P (0) : {Φ(~a1(0)), . . . ,Φ(~aµ(0))}
while ι(P (t)) 6= true do

recombine: P ′(t) := rΘr(P (t))
mutate: P ′′(t) := mΘm(P ′(t))
evaluate: P ′′(t) : {Φ(~a

′′
1(t)), . . . ,Φ(~a

′′

λ(t))}
select: P (t+ 1) := sΘs(P

′′(t) ∪Q)
t := t+ 1

end while

The general outline of an Evolutionary Algorithm is presented by Bäck in algo-

rithm 4 [8].

1.1.1 Evolutionary Algorithms: Applications.

A particularly pertinent example of the application of Evolutionary Algorithms

to pattern recognition comes from Radtke et al. [130]. The authors apply Multi-

Objective Genetic Algorithms (MOGAs) to two parts of a handwritten character

recognition system. First, they use the Multi Objective Memetic Algorithm (MOMA)

[131] to extract a small set of effective features. The fitness function minimizes both

the dimensionality of the feature set and the classification error rate of a projection

distance (PD) classifier [86] on a validation set.

134



The PD is only used as a wrapper (see section 2.2.1.2) for evaluation of the ex-

tracted feature set. In the next step, these features are used to train a diverse set

K of p classifiers to be used as candidates for the final Ensemble of Classifiers [87].

Again, a MOGA is applied, in this case the popular Non-Dominated Sorting Genetic

Algorithm (NSGA-II) [42], for the subset selection from K. The fitness of each solu-

tion (a binary vector of length p indicating membership of each Ki in the candidate

ensemble) in this case is based on the performance of the ensemble on a validation

set.

Another pattern recognition example is presented in [162], in which the authors

study feature selection using single and multi-objective memetic frameworks.

For examples of how these concepts have been applied to intrusion detection, see

[10] for an analysis of MOGAs used to identify encrypted traffic. In [68], Haag applies

a multi-objective artificial immune system to some public network traffic data sets to

detect intrusions.
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Appendix B. MFIRE System Details

This appendix provides some additional MFIRE details. In section 2.1, the mes-

sages used by MFIRE are detailed. Section 2.2 lists the fourteen observations collected

by MFIRE agents for use in derived features.

2.1 MFIRE: Messages

The figures provided in this section show the messages used in MFIRE. In each

figure, the left side is used for the sender. The type of the message is displayed first,

and below it, the format. The format is essential for extracting message components

from the packet’s payload, which itself is a single string. On the right side of each

figure, we show the actions that are taken by the recipient.

Figure 21 shows the messages sent from the controller and received by agents.

Figure 22 shows the messages sent from agents and received by the controller.

Figure 23 shows the SHARE message used for feature value exchange between

agents.

Figure 24 shows the messages involved in agent migration. MIGRATE is sent

by an agent that received MOVE from the controller previously. It is sent to the

AgentManager at the migration destination node. The MIGRATE message contains

all information required to reinstantiate the agent at the distant end. MIGRATEACK

is sent by an AgentManager that received a MIGRATE message previously. It is sent

to the AgentManager at the node where the original copy of the migrating agent still

resides. The AgentManager that receives MIGRATEACK terminates the agent.

2.2 MFIRE: Observations

Each observation in MFIRE represents a traffic statistic collected over the duration

of a single timestep. These are used to derive feature values.
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ASSIGN

RESYNC

MOVE

STAY

SYNCREPLY

ASSIGN:[end of OBSERVE phase]:
               [dest address of assignment]:[dest port]

ASSIGN

verify message is current:
Assign.getEndObserve() == this.endobserve?
If so, store dest address and port in ArrayList<Integer> tracking all
recipients to whom this agent needs to send feature measurements
at the end of the observation period

RESYNC

RESYNC

send SYNC to controller and go to SYNCHRONIZING mode

SYNCREPLY:[t0]:[t1]:[t2]:[start of next observation period]:
                       [CHECKINSlength]:[OBSERVElength]:
                       [EXCHANGElength]:[RESULTSlength]:
                       [MOVESTAYlength]

SYNCREPLY

Use NTP offset calculation: offset = ((t1-t0)+(t2-t3))/2 and add this
offset to the agent's clock.  t3 is the agent's time of receipt of this
SYNCREPLY.  Using the updated clock, start collecting at the start of
the next observation period and send CHECKIN at the earliest
opportunity.

MOVE:[end of MOVE/STAY phase]

MOVE

verify message is current:
Move.getEndMoveStay() == this.endmovestay?
If so, send MIGRATE to a neighboring node.
Otherwise, send SYNC to controller and go to
SYNCHRONIZING mode.

STAY:[end of MOVE/STAY phase] verify message is current:
Move.getEndMoveStay() == this.endmovestay?
If so, send MIGRATE to a neighboring node.
Otherwise, send SYNC to controller and go to
SYNCHRONIZING mode.

STAY

Figure 21. MFIRE: Messages sent by the controller and received by agents
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SYNC

CHECKIN

RESULTS

CHECKIN:[end of CHECKIN phase]:[agentID]

CHECKIN

verify message is current:
Checkin.getEndCheckin() == this.endcheckin?
If so, store source addr & port in ArrayList<Integer>s so that at the
end of the Checkin phase, a sharing assignment is made.
Also, add new entry to agentRatings if the agentID hasn't been seen
before.  Set initial rating to a common base value.
Otherwise, send RESYNC.

SYNC:[t0]

SYNC

Reply with SYNCREPLY

RESULTS:[end of RESULTS phase]:[agentID]:
                 [combined classification]:[local classification]

verify message is current.
If so, register the combined classification as one vote in the global
classification, unless the combined classification == NONE,
in which case we can use the local classification but weighted
differently than the combined classification.
If the message is not current, disregard the classifications and
send RESYNC.

RESULTS

Figure 22. MFIRE: Messages sent by agents and received by the controller

SHARE

SHARE:[end of EXCHANGE phase]:
             [feature1 ID]:[feature1 value]:
             [feature2 ID]:[feature2 value]:[...]

verify message is current.
If so, store features to use at the end of the EXCHANGE phase
to make the combined classification.
If the message is not current, disregard.

SHARE

Figure 23. MFIRE: Messages sent by agents to other agents

MIGRATE

MIGRATE:
                [classifier class name],[param 1],[param 2],[...]:
                [observation 1 class name]*[o1 param 1]*[o1 param 2]*[...],
                [observation 2 class name]*[o2 param 1]*[o2 param 2]*[...],
                [...]:
                [feature 1 class name]*[f1 param 1]*[f1 param 2]*[...],
                [feature 2 class name]*[f2 param 1]*[f2 param 2]*[...],
                [...]

MIGRATE

Instantiate agent at this node.

MIGRATEACK MIGRATEACK

MIGRATEACK:[original port] Invoke this.host.killProcess([original port])

Figure 24. MFIRE: Messages involved in agent migration

138



The fourteen observations collected by agents in MFIRE:

1. Average number of bytes per < destaddr, destport >-tuple

2. Average number of bytes per < sourceaddr, sourceport >-tuple

3. Number of distinct destination addresses

4. Number of distinct < destaddr, destport >-tuples

5. Number of distinct destination ports

6. Ratio of destination ports to destination addresses

7. Total number of inbound bytes

8. Total number of inbound packets

9. Ratio of packets to < destaddr, destport >-tuples

10. Ratio of packets to < sourceaddr, sourceport >-tuples

11. Number of distinct source addresses

12. Number of distinct < sourceaddr, sourceport >-tuples

13. Number of distinct source ports

14. Ratio of source ports to source addresses

Clearly there are many linear dependencies in this set of observations. Care must

be exercised when performing feature selection from this set.
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Appendix C. Test Plan for MFIRE Command, Control, and

Communications

Communication in a network environment is fraught with peril. Packet loss is

incurred by noise on the line or disruptions in network services. Links are sometimes

severed, routers and switches fail, and processes on either end of a traffic flow may

shut down unexpectedly or be unacceptably delayed for a variety of reasons.

The challenge to network protocol design is to handle such failures gracefully.

MFIRE is designed to operate in the face of failure. The principle cause of com-

munications failures is saturated links due to denial of service attacks and worm

outbreaks. Nodes do attempt to route around the problem (in a very simple way),

but when multiple inbound links to the destination are saturated, a packet’s Time to

Live (TTL) is quickly exhausted, and the packet is discarded.

The system includes eleven types of messages. There are two Controller states

and six Agent states, resulting in twelve combined states. In each of these states, one

of the eleven types of messages may or may not be expected by either the Agent or

the Controller.

Suffice it to say there are three general categories of test cases to consider: 1)

normal operation; the appropriate message type is received and is in-sync with what

the receiving party expected; 2) message loss; the Agent or the Controller expected

a message that never arrived; 3) unexpected message received; the receiving party

either did not expect a message of that type for the current state, or the message is

out-of-sync with the receiver.

Determining whether a message is in-sync or out-of-sync is made possible by

requiring each message to include a time-based field, typically indicating the sender’s

value for the end of the current state.

Exhaustively testing all combinations of messages (including losses and in- or out-
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of-sync cases), Controller states, and Agent states requires well over one hundred

tests. Many of these have considerable conceptual overlap; for example, if the Agent

is in the AWAITINGENDOBSERVE state and receives anything but ASSIGN from

the Controller (e.g. STAY, MOVE, RESYNC), the situation is the same: receipt of

an unexpected message.

The test cases listed below focus on the most important aspects of ensuring the

multi agent system has a robust communications protocol.

Test Case Expected Observable Behaviors

Synchronization - no fail-
ures

• Agents send SYNC to Controller

• Controller responds with SYNCRE-
PLY

• Agent uses SYNCREPLY payload to
adjust its clock to match the Con-
troller’s

• when packets are not delayed, the
clocks for both Agent and Controller
should have the same value at the con-
clusion of the Process phase and there-
after
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Synchronization - Single
SYNC Loss and Recovery

• Agent’s active status displayed with
each call to processMessages()

• Agent sends SYNC to Controller with
minimum TTL

• SYNC TTL expires before reaching
Controller

• Agent times out and sends SYNC again
with normal TTL

• Controller responds with SYNCRE-
PLY

• Agent uses SYNCREPLY payload to
adjust its clock to match the Con-
troller’s

• when packets are not delayed, the
clocks for both Agent and Controller
should have the same value at the con-
clusion of the Process phase and there-
after
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Synchronization - Multiple
SYNC Losses and Agent
Deactivation • Agent’s active status displayed with

each call to processMessages()

• Agent sends SYNC to Controller with
minimum TTL

• SYNC TTL expires before reaching
Controller

• Agent times out and sends SYNC again

• repeat until MAXTIMEOUTS ex-
ceeded

• Agent deactivates and is removed from
the schedule

• Following deactivation, no more status
displays from this agent
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Synchronization - Single
SYNCREPLY Loss and
Recovery • Agent sends SYNC to Controller

• Controller responds with SYNCRE-
PLY with minimum TTL

• SYNCREPLY TTL expires before
reaching Agent

• Agent times out and sends SYNC again

• Controller responds with SYNCRE-
PLY

• Agent uses SYNCREPLY payload to
adjust its clock to match the Con-
troller’s

• when packets are not delayed, the
clocks for both Agent and Controller
should have the same value at the con-
clusion of the Process phase and there-
after

Synchronization - Multiple
SYNCREPLY Losses and
Agent Deactivation • Agent sends SYNC to Controller

• Controller responds with SYNCRE-
PLY with minimum TTL

• SYNCREPLY TTL expires before
reaching Agent

• Agent times out and sends SYNC again

• repeat until MAXTIMEOUTS ex-
ceeded

• Agent deactivates and is removed from
the schedule

• Following deactivation, no more status
displays from this agent
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Agent Desync and Recovery

• Agent synchronizes with Controller

• Agent sends CHECKIN to Controller

• Agent receives SHARE from peer

• Agent sends RESULT to Controller

• Controller sends STAY to Agent

• Agent clock artificially advanced 1000
ticks

• Agent sends CHECKIN with out-of-
sync value in the end-of-check-in field

• Controller responds with RESYNC

• Agent synchronizes per the “Synchro-
nization - no failures” case

• Agent sends CHECKIN at the next
window of opportunity

Agent Fails to Receive
SHARE

• Agent sends CHECKIN to Controller

• Controller sends ASSIGN to peer for
the checked-in Agent

• Peer sends SHARE with minimum
TTL

• SHARE TTL expires before reaching
Agent

• Agent sends RESULT to Controller
with NOCOMBINEDCLASS value in
the “combined classification” field
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Agent Fails to Receive
STAY / MOVE

• Agent sends RESULT to Controller

• Controller sends STAY with minimum
TTL

• STAY TTL expires before reaching
Agent

• Agent synchronizes per the “Synchro-
nization - no failures” case

• Agent sends CHECKIN at the next
window of opportunity

Controller Fails to Receive
RESULT

• Agent sends RESULT to Controller
with minimum TTL

• RESULT TTL expires before reaching
Controller

• Controller publishes result indicating
number of votes cast = one less than
the number of agents

• Controller sends STAY (STAY or
MOVE is sent to all agents that sent
CHECKIN regardless of whether a RE-
SULT was received)

• Agent sends CHECKIN
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Agent Receives Unexpected
Message

• Agent sends RESULT

• Agent artificially changes mode to
AWAITINGENDEXCHANGE

• Controller sends STAY

• Agent synchronizes per the “Synchro-
nization - no failures” case

Controller Receives Unex-
pected Message

• Agent sends CHECKIN

• While in AWAITINGENDEX-
CHANGE, Agent sends CHECKIN
again

• Controller responds with RESYNC

• Agent synchronizes per the “Synchro-
nization - no failures” case
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